IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p325-d199436.html
   My bibliography  Save this article

Optimal Decision-Making to Charge Electric Vehicles in Heterogeneous Networks: Stackelberg Game Approach

Author

Listed:
  • Shijun Chen

    (School of Physics and Electronic Engineering, Anqing Normal University, Anqing 246133, China)

  • Huwei Chen

    (Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)

  • Shanhe Jiang

    (School of Physics and Electronic Engineering, Anqing Normal University, Anqing 246133, China)

Abstract

Electric vehicles (EVs) are designed to improve the efficiency of energy and prevent the environment from being polluted, when they are widely and reasonably used in the transport system. However, due to the feature of EV’s batteries, the charging problem plays an important role in the application of EVs. Fortunately, with the help of advanced technologies, charging stations powered by smart grid operators (SGOs) can easily and conveniently solve the problems and supply charging service to EV users. In this paper, we consider that EVs will be charged by charging station operators (CSOs) in heterogeneous networks (Hetnet), through which they can exchange the information with each other. Considering the trading relationship among EV users, CSOs, and SGOs, we design their own utility functions in Hetnet, where the demand uncertainty is taken into account. In order to maximize the profits, we formulate this charging problem as a four-stage Stackelberg game, through which the optimal strategy is studied and analyzed. In the Stackelberg game model, we theoretically prove and discuss the existence and uniqueness of the Stackelberg equilibrium (SE). Using the proposed iterative algorithm, the optimal solution can be obtained in the optimization problem. The performance of the strategy is shown in the simulation results. It is shown that the simulation results confirm the efficiency of the model in Hetnet.

Suggested Citation

  • Shijun Chen & Huwei Chen & Shanhe Jiang, 2019. "Optimal Decision-Making to Charge Electric Vehicles in Heterogeneous Networks: Stackelberg Game Approach," Energies, MDPI, vol. 12(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:325-:d:199436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    2. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    3. Ainur Rakhymbay & Anvar Khamitov & Mehdi Bagheri & Batyrbek Alimkhanuly & Maxim Lu & Toan Phung, 2018. "Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle," Energies, MDPI, vol. 11(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shunxi & Su, Bowen & St-Pierre, David L. & Sui, Pang-Chieh & Zhang, Guofang & Xiao, Jinsheng, 2017. "Decision-making of compressed natural gas station siting for public transportation: Integration of multi-objective optimization, fuzzy evaluating, and radar charting," Energy, Elsevier, vol. 140(P1), pages 11-17.
    2. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    3. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    4. Danijela Tuljak-Suban & Patricija Bajec, 2022. "A Hybrid DEA Approach for the Upgrade of an Existing Bike-Sharing System with Electric Bikes," Energies, MDPI, vol. 15(21), pages 1-23, October.
    5. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    6. Abdel-Mohsen O. Mohamed & Dina Mohamed & Adham Fayad & Moza T. Al Nahyan, 2024. "Enhancing Decision Making and Decarbonation in Environmental Management: A Review on the Role of Digital Technologies," Sustainability, MDPI, vol. 16(16), pages 1-34, August.
    7. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    8. Manbachi, M. & Sadu, A. & Farhangi, H. & Monti, A. & Palizban, A. & Ponci, F. & Arzanpour, S., 2016. "Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform," Applied Energy, Elsevier, vol. 169(C), pages 28-39.
    9. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    10. Erbaş, Mehmet & Kabak, Mehmet & Özceylan, Eren & Çetinkaya, Cihan, 2018. "Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis," Energy, Elsevier, vol. 163(C), pages 1017-1031.
    11. Woo, Hyeon & Son, Yongju & Cho, Jintae & Kim, Sung-Yul & Choi, Sungyun, 2023. "Optimal expansion planning of electric vehicle fast charging stations," Applied Energy, Elsevier, vol. 342(C).
    12. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    13. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    14. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    15. Gonçalo C. Abrantes & Valter S. Costa & Marina S. Perdigão & Sérgio Cruz, 2024. "Mutual Inductance Estimation Using an ANN for Inductive Power Transfer in EV Charging Applications," Energies, MDPI, vol. 17(7), pages 1-19, March.
    16. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    17. Hamza El Hafdaoui & Hamza El Alaoui & Salma Mahidat & Zakaria El Harmouzi & Ahmed Khallaayoun, 2023. "Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    18. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
    19. Arzu Muyesseroglu & Irem Duzdar Argun & Gulgun Kayakutlu, 2023. "Electric vehicle charge station layout planning: A case study in Istanbul Technical University campus," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(3), pages 1767-1778, April.
    20. Renato Ferrero & Mario Collotta & Maria Victoria Bueno-Delgado & Hsing-Chung Chen, 2020. "Smart Management Energy Systems in Industry 4.0," Energies, MDPI, vol. 13(2), pages 1-3, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:325-:d:199436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.