IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p375-d478589.html
   My bibliography  Save this article

Adaptive Control for Energy Exchange with Probabilistic Interval Predictors in Isolated Microgrids

Author

Listed:
  • Jiayu Cheng

    (Shenzhen and Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong, Shenzhen 518172, China
    Shenzhen Research Institute of Big Data (SRIBD), Shenzhen 518172, China)

  • Dongliang Duan

    (Shenzhen Research Institute of Big Data (SRIBD), Shenzhen 518172, China
    Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA)

  • Xiang Cheng

    (Shenzhen Research Institute of Big Data (SRIBD), Shenzhen 518172, China
    State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computing Sciences, Peking University, Beijing 100080, China)

  • Liuqing Yang

    (Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA)

  • Shuguang Cui

    (Shenzhen and Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong, Shenzhen 518172, China
    Shenzhen Research Institute of Big Data (SRIBD), Shenzhen 518172, China
    Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616, USA)

Abstract

Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according to the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance.

Suggested Citation

  • Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2021. "Adaptive Control for Energy Exchange with Probabilistic Interval Predictors in Isolated Microgrids," Energies, MDPI, vol. 14(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:375-:d:478589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2020. "Probabilistic Microgrid Energy Management with Interval Predictions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    2. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    3. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    4. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    5. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    6. Nicholas Moehle & Enzo Busseti & Stephen Boyd & Matt Wytock, 2019. "Dynamic Energy Management," Springer Optimization and Its Applications, in: Jesús M. Velásquez-Bermúdez & Marzieh Khakifirooz & Mahdi Fathi (ed.), Large Scale Optimization in Supply Chains and Smart Manufacturing, pages 69-126, Springer.
    7. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    8. João Soares & Tiago Pinto & Fernando Lezama & Hugo Morais, 2018. "Survey on Complex Optimization and Simulation for the New Power Systems Paradigm," Complexity, Hindawi, vol. 2018, pages 1-32, August.
    9. Sofana Reka. S & Tomislav Dragičević & Pierluigi Siano & S.R. Sahaya Prabaharan, 2019. "Future Generation 5G Wireless Networks for Smart Grid: A Comprehensive Review," Energies, MDPI, vol. 12(11), pages 1-17, June.
    10. Nicholas Moehle & Enzo Busseti & Stephen Boyd & Matt Wytock, 2019. "Dynamic Energy Management," Papers 1903.06230, arXiv.org.
    11. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
    12. Leonori, Stefano & Martino, Alessio & Frattale Mascioli, Fabio Massimo & Rizzi, Antonello, 2020. "Microgrid Energy Management Systems Design by Computational Intelligence Techniques," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torkan, Ramin & Ilinca, Adrian & Ghorbanzadeh, Milad, 2022. "A genetic algorithm optimization approach for smart energy management of microgrids," Renewable Energy, Elsevier, vol. 197(C), pages 852-863.
    2. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    3. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    4. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    5. Shane Barratt & Stephen Boyd, 2020. "Multi-Period Liability Clearing via Convex Optimal Control," Papers 2005.09066, arXiv.org.
    6. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    7. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    9. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    10. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    11. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    12. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    13. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    14. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    15. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    16. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    17. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    18. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2020. "Probabilistic Microgrid Energy Management with Interval Predictions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    19. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    20. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:375-:d:478589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.