IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p382-d308129.html
   My bibliography  Save this article

Smart Management Energy Systems in Industry 4.0

Author

Listed:
  • Renato Ferrero

    (Dipartimento di Automatica e Informatica, Politecnico di Torino and Italy, 10129 Torino TO, Italy)

  • Mario Collotta

    (Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna EN, Italy)

  • Maria Victoria Bueno-Delgado

    (Department of Information Technologies and Communications, Technical University of Cartagena, 30202 Cartagena, Spain)

  • Hsing-Chung Chen

    (Department of Computer Science and Information Engineering, Asia University, Taichung City 41354, Taiwan)

Abstract

In its origins, the term Industry 4 [...]

Suggested Citation

  • Renato Ferrero & Mario Collotta & Maria Victoria Bueno-Delgado & Hsing-Chung Chen, 2020. "Smart Management Energy Systems in Industry 4.0," Energies, MDPI, vol. 13(2), pages 1-3, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:382-:d:308129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Garcia & Nicolás Montés, 2019. "Real-Time Idle Time Cancellation by Means of Miniterm 4.0," Energies, MDPI, vol. 12(7), pages 1-13, March.
    2. Jeng-Wei Lin & Shih-wei Liao & Fang-Yie Leu, 2019. "Sensor Data Compression Using Bounded Error Piecewise Linear Approximation with Resolution Reduction," Energies, MDPI, vol. 12(13), pages 1-20, June.
    3. Jingshu Xiao & Jun Xie & Xingying Chen & Kun Yu & Zhenyu Chen & Kaining Luan, 2018. "Robust Optimization of Power Consumption for Public Buildings Considering Forecasting Uncertainty of Environmental Factors," Energies, MDPI, vol. 11(11), pages 1-13, November.
    4. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    3. Jaroslav Vrchota & Martin Pech & Ladislav Rolínek & Jiří Bednář, 2020. "Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review," Sustainability, MDPI, vol. 12(15), pages 1-47, July.
    4. Wieslaw Urban & Krzysztof Łukaszewicz & Elżbieta Krawczyk-Dembicka, 2020. "Application of Industry 4.0 to the Product Development Process in Project-Type Production," Energies, MDPI, vol. 13(21), pages 1-20, October.
    5. Serhii Voitko & Olena Trofymenko, 2021. "Development of methodological foundations for the development of energy in Industry 4.0 in part of game theory and blockchain," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 2(4(58)), pages 20-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    2. Javier Llopis & Antonio Lacasa & Eduardo Garcia & Nicolás Montés & Lucía Hilario & Judith Vizcaíno & Cristina Vilar & Judit Vilar & Laura Sánchez & Juan Carlos Latorre, 2022. "Manufacturing Maps, a Novel Tool for Smart Factory Management Based on Petri Nets and Big Data Mini-Terms," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    3. Antonio Pepiciello & Alfredo Vaccaro & Mario Mañana, 2019. "Robust Optimization of Energy Hubs Operation Based on Extended Affine Arithmetic," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Nicholas Moehle & Enzo Busseti & Stephen Boyd & Matt Wytock, 2019. "Dynamic Energy Management," Papers 1903.06230, arXiv.org.
    5. Lang Zhao & Yuan Zeng & Zhidong Wang & Yizheng Li & Dong Peng & Yao Wang & Xueying Wang, 2023. "Robust Optimal Scheduling of Integrated Energy Systems Considering the Uncertainty of Power Supply and Load in the Power Market," Energies, MDPI, vol. 16(14), pages 1-14, July.
    6. Aviad Navon & Gefen Ben Yosef & Ram Machlev & Shmuel Shapira & Nilanjan Roy Chowdhury & Juri Belikov & Ariel Orda & Yoash Levron, 2020. "Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review," Energies, MDPI, vol. 13(15), pages 1-35, August.
    7. Nurcan Yarar & Yeliz Yoldas & Serkan Bahceci & Ahmet Onen & Jaesung Jung, 2024. "A Comprehensive Review Based on the Game Theory with Energy Management and Trading," Energies, MDPI, vol. 17(15), pages 1-30, July.
    8. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    9. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    10. Shijun Chen & Huwei Chen & Shanhe Jiang, 2019. "Optimal Decision-Making to Charge Electric Vehicles in Heterogeneous Networks: Stackelberg Game Approach," Energies, MDPI, vol. 12(2), pages 1-20, January.
    11. Lu Qu & Bin Ouyang & Zhichang Yuan & Rong Zeng, 2019. "Steady-State Power Flow Analysis of Cold-Thermal-Electric Integrated Energy System Based on Unified Power Flow Model," Energies, MDPI, vol. 12(23), pages 1-16, November.
    12. Lemiao Qiu & Huifang Zhou & Zili Wang & Wenqian Lou & Shuyou Zhang & Lichun Zhang, 2020. "A Stepped-Segmentation Method for the High-Speed Theoretical Elevator Car Air Pressure Curve Adjustment," Energies, MDPI, vol. 13(10), pages 1-21, May.
    13. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Lv, Haipeng & Fan, Tianyuan & Aikepaer, Sumaiya, 2023. "Stochastic optimal scheduling strategy of cross-regional carbon emissions trading and green certificate trading market based on Stackelberg game," Renewable Energy, Elsevier, vol. 219(P1).
    14. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    15. Qi Zhang & Shaohua Zhang & Xian Wang & Xue Li & Lei Wu, 2020. "Conditional-Robust-Profit-Based Optimization Model for Electricity Retailers with Shiftable Demand," Energies, MDPI, vol. 13(6), pages 1-19, March.
    16. Riyadh Nazar Ali Algburi & Hongli Gao, 2019. "Health Assessment and Fault Detection System for an Industrial Robot Using the Rotary Encoder Signal," Energies, MDPI, vol. 12(14), pages 1-25, July.
    17. Morteza Vahid-Ghavidel & Mohammad Sadegh Javadi & Matthew Gough & Sérgio F. Santos & Miadreza Shafie-khah & João P.S. Catalão, 2020. "Demand Response Programs in Multi-Energy Systems: A Review," Energies, MDPI, vol. 13(17), pages 1-17, August.
    18. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Liu, Shuai & Li, Shuzhen & Wang, Yu, 2021. "Distributed coordinative transaction of a community integrated energy system based on a tri-level game model," Applied Energy, Elsevier, vol. 295(C).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:382-:d:308129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.