IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924002885.html
   My bibliography  Save this article

A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features

Author

Listed:
  • Li, Zilu
  • Peng, Xiangang
  • Cui, Wenbo
  • Xu, Yilin
  • Liu, Jianan
  • Yuan, Haoliang
  • Lai, Chun Sing
  • Lai, Loi Lei

Abstract

With the high penetration of renewable generation systems in the power grid, the accurate simulation of the uncertainty in renewable energy generation is vital to the safe operation of the power system This paper proposes a novel controllable method for renewable scenario generation based on the improved VAEGAN model. The standard VAEGAN model is first improved using spectral normalization technique and the generator of GAN is trained using VAE. Then, the external and internal interpretable features in the latent space are learned as the controllable vector utilizing the principle of mutual information maximization. Finally, the renewable energy scenarios with overall features are generated using the external universal meteorological features, and renewable energy scenarios with specific features are generated by tuning along the internal interpretable feature of the controllable vector in the latent space. The proposed approach is used to produce real-time series data for renewable energy including wind and solar power. Experiments demonstrate that our method has a better performance in terms of controllable generation and enables the generation of preference patterns covering various statistical features.

Suggested Citation

  • Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924002885
    DOI: 10.1016/j.apenergy.2024.122905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Sebastian & Marjanovic, Ognjen & Parisio, Alessandra, 2019. "Generalised control-oriented modelling framework for multi-energy systems," Applied Energy, Elsevier, vol. 235(C), pages 320-331.
    2. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    3. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    4. Krishna, Attoti Bharath & Abhyankar, Abhijit R., 2023. "Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method," Energy, Elsevier, vol. 265(C).
    5. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    6. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    7. Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei & Xu, Zhao & McCulloch, Malcolm D. & Wong, Kit Po, 2017. "A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 439-451.
    8. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xin & Yu, Jingjia & Gong, Lin & Liu, Minxia & Xiang, Xi, 2024. "A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction," Energy, Elsevier, vol. 294(C).
    2. Ye, Lin & Peng, Yishu & Li, Yilin & Li, Zhuo, 2024. "A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power," Applied Energy, Elsevier, vol. 364(C).
    3. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    4. Jaehyun Yoo & Yongju Son & Myungseok Yoon & Sungyun Choi, 2023. "A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors," Sustainability, MDPI, vol. 15(23), pages 1-15, December.
    5. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    6. Ali Keyvandarian & Ahmed Saif, 2024. "An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2055-2082, November.
    7. Daniel Fernández Valderrama & Juan Ignacio Guerrero Alonso & Carlos León de Mora & Michela Robba, 2024. "Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems," Energies, MDPI, vol. 17(21), pages 1-14, October.
    8. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    9. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    11. Khalid A. Alnowibet & Ahmad M. Alshamrani & Adel F. Alrasheedi, 2023. "A Bilevel Stochastic Optimization Framework for Market-Oriented Transmission Expansion Planning Considering Market Power," Energies, MDPI, vol. 16(7), pages 1-15, April.
    12. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    13. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    15. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    16. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    17. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    18. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    19. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    20. Yan, Chao & Geng, Xinbo & Bie, Zhaohong & Xie, Le, 2022. "Two-stage robust energy storage planning with probabilistic guarantees: A data-driven approach," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924002885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.