IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1063-d143278.html
   My bibliography  Save this article

Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game

Author

Listed:
  • Yajing Gao

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Xiaojie Zhou

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Jiafeng Ren

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Zheng Zhao

    (Department of automation, North China Electric Power University, Baoding 071003, China)

  • Fushen Xue

    (State Grid Jiangsu Electric Power Co., Ltd., Suzhou Power Supply Branch, Suzhou 215004, China)

Abstract

The openness of the electricity retail market results in the power retailers facing fierce competition in the market. This article aims to analyze the electricity purchase optimization decision-making of each power retailer with the background of the big data era. First, in order to guide the power retailer to make a purchase of electricity, this paper considers the users’ historical electricity consumption data and a comprehensive consideration of multiple factors, then uses the wavelet neural network (WNN) model based on “meteorological similarity day (MSD)” to forecast the user load demand. Second, in order to guide the quotation of the power retailer, this paper considers the multiple factors affecting the electricity price to cluster the sample set, and establishes a Genetic algorithm- back propagation (GA-BP) neural network model based on fuzzy clustering (FC) to predict the short-term market clearing price (MCP). Thirdly, based on Sealed-bid Auction (SA) in game theory, a Bayesian Game Model (BGM) of the power retailer’s bidding strategy is constructed, and the optimal bidding strategy is obtained by obtaining the Bayesian Nash Equilibrium (BNE) under different probability distributions. Finally, a practical example is proposed to prove that the model and method can provide an effective reference for the decision-making optimization of the sales company.

Suggested Citation

  • Yajing Gao & Xiaojie Zhou & Jiafeng Ren & Zheng Zhao & Fushen Xue, 2018. "Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game," Energies, MDPI, vol. 11(5), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1063-:d:143278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    3. E. J. Anderson & A. B. Philpott, 2002. "Optimal Offer Construction in Electricity Markets," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 82-100, February.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    6. Bessec, Marie & Fouquau, Julien, 2018. "Short-run electricity load forecasting with combinations of stationary wavelet transforms," European Journal of Operational Research, Elsevier, vol. 264(1), pages 149-164.
    7. Li, Weilin & Xu, Peng & Lu, Xing & Wang, Huilong & Pang, Zhihong, 2016. "Electricity demand response in China: Status, feasible market schemes and pilots," Energy, Elsevier, vol. 114(C), pages 981-994.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heloísa P. Burin & Julio S. M. Siluk & Graciele Rediske & Carmen B. Rosa, 2020. "Determining Factors and Scenarios of Influence on Consumer Migration from the Regulated Market to the Deregulated Electricity Market," Energies, MDPI, vol. 14(1), pages 1-18, December.
    2. Saidjon Shiralievich Tavarov & Pavel Matrenin & Murodbek Safaraliev & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Forecasting of Electricity Consumption by Household Consumers Using Fuzzy Logic Based on the Development Plan of the Power System of the Republic of Tajikistan," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    2. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    3. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    4. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    5. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    6. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    7. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    8. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    9. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    10. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    11. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    12. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    13. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    14. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    15. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    16. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    17. Xiaoming Xie & Meiping Li & Du Zhang, 2021. "A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning," Energies, MDPI, vol. 14(21), pages 1-14, November.
    18. Lintao Yang & Honggeng Yang & Haitao Liu, 2018. "GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    19. Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
    20. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1063-:d:143278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.