IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5382-d871292.html
   My bibliography  Save this article

Time-Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing

Author

Listed:
  • Hui Guo

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Dandan Gong

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Lijun Zhang

    (Instituto Superior Técnico, University of Lisbon, 999022 Lisbon, Portugal)

  • Wenke Mo

    (Shanghai Marine Equipment Research Institute, Shanghai 200031, China)

  • Feng Ding

    (Shanghai Marine Equipment Research Institute, Shanghai 200031, China)

  • Fei Wang

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

Abstract

The growing popularity of renewable energy and hydrogen-powered vehicles (HVs) will facilitate the coordinated optimization of energy and transportation systems for economic and environmental benefits. However, little research attention has been paid to dynamic hydrogen pricing and its impact on the optimal performance of energy and transportation systems. To reduce the dependency on centralized controllers and protect information privacy, a time-decoupling layered optimization strategy is put forward to realize the low-carbon and economic operation of energy and transportation systems under dynamic hydrogen pricing. First, a dynamic hydrogen pricing mechanism was formulated on the basis of the share of renewable power in the energy supply and introduced into the optimization of distributed energy stations (DESs), which will promote hydrogen production using renewable power and minimize the DES construction and operation cost. On the basis of the dynamic hydrogen price optimized by DESs and the traffic conditions on roads, the raised user-centric routing optimization method can select a minimum cost route for HVs to purchase fuels from a DES with low-cost and/or low-carbon hydrogen. Finally, the effectiveness of the proposed optimization strategy was verified by simulations.

Suggested Citation

  • Hui Guo & Dandan Gong & Lijun Zhang & Wenke Mo & Feng Ding & Fei Wang, 2022. "Time-Decoupling Layered Optimization for Energy and Transportation Systems under Dynamic Hydrogen Pricing," Energies, MDPI, vol. 15(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5382-:d:871292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Luo & Yih-Fang Huang & Vijay Gupta, 2018. "Stochastic Dynamic Pricing for EV Charging Stations with Renewables Integration and Energy Storage," Papers 1801.02128, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Jingshi & Wu, Jiaman & Wu, Chenye & Moura, Scott, 2023. "Electric vehicles embedded virtual power plants dispatch mechanism design considering charging efficiencies," Applied Energy, Elsevier, vol. 352(C).
    2. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).
    4. Leonardo Nogueira Fontoura da Silva & Marcelo Bruno Capeletti & Alzenira da Rosa Abaide & Luciano Lopes Pfitscher, 2024. "A Stochastic Methodology for EV Fast-Charging Load Curve Estimation Considering the Highway Traffic and User Behavior," Energies, MDPI, vol. 17(7), pages 1-27, April.
    5. Weihua Wu & Jieyun Wei & Eun-Young Nam & Yifan Zhang & Dongphil Chun, 2024. "Data Drive—Charging Behavior of Electric Vehicle Users with Variable Roles," Sustainability, MDPI, vol. 16(11), pages 1-18, June.
    6. Liu, Shuohan & Cao, Yue & Ni, Qiang & Xu, Lexi & Zhu, Yongdong & Zhang, Xin, 2023. "Towards reservation-based E-mobility service via hybrid of V2V and G2V charging modes," Energy, Elsevier, vol. 268(C).
    7. Ruisheng Wang & Zhong Chen & Qiang Xing & Ziqi Zhang & Tian Zhang, 2022. "A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    8. Miguel Campaña & Esteban Inga & Jorge Cárdenas, 2021. "Optimal Sizing of Electric Vehicle Charging Stations Considering Urban Traffic Flow for Smart Cities," Energies, MDPI, vol. 14(16), pages 1-16, August.
    9. Fox-Penner, Peter & Gorman, Will & Hatch, Jennifer, 2018. "Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: Estimates & policy observations," Energy Policy, Elsevier, vol. 122(C), pages 203-213.
    10. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    11. Gong, Lili & Cao, Wu & Liu, Kangli & Yu, Yue & Zhao, Jianfeng, 2020. "Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources," Renewable Energy, Elsevier, vol. 156(C), pages 665-676.
    12. Rui Ye & Xueliang Huang & Ziqi Zhang & Zhong Chen & Ran Duan, 2018. "A High-Efficiency Charging Service System for Plug-in Electric Vehicles Considering the Capacity Constraint of the Distribution Network," Energies, MDPI, vol. 11(4), pages 1-20, April.
    13. Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
    14. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    15. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    16. Santarromana, Rudolph & Mendonça, Joana & Dias, André Martins, 2020. "The effectiveness of decarbonizing the passenger transport sector through monetary incentives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 442-462.
    17. Nala Alahmari & Rashid Mehmood & Ahmed Alzahrani & Tan Yigitcanlar & Juan M. Corchado, 2023. "Autonomous and Sustainable Service Economies: Data-Driven Optimization of Design and Operations through Discovery of Multi-Perspective Parameters," Sustainability, MDPI, vol. 15(22), pages 1-44, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5382-:d:871292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.