Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2021.102195
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
- Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
- Dehghani, Hesam & Bogdanovic, Dejan, 2018. "Copper price estimation using bat algorithm," Resources Policy, Elsevier, vol. 55(C), pages 55-61.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Liu, Chang & Hu, Zhenhua & Li, Yan & Liu, Shaojun, 2017. "Forecasting copper prices by decision tree learning," Resources Policy, Elsevier, vol. 52(C), pages 427-434.
- Buncic, Daniel & Moretto, Carlo, 2015.
"Forecasting copper prices with dynamic averaging and selection models,"
The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
- Buncic, Daniel & Moretto, Carlo, 2014. "Forecasting Copper Prices with Dynamic Averaging and Selection Models," Economics Working Paper Series 1430, University of St. Gallen, School of Economics and Political Science.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
- Luan, Jing & Yao, Zhong & Zhao, Futao & Song, Xin, 2019. "A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 294-309.
- Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
- Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yanfeng Wang & Haohao Wang & Sanyi Li & Lidong Wang, 2022. "Survival Risk Prediction of Esophageal Cancer Based on the Kohonen Network Clustering Algorithm and Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
- Liu, Longlong & Zhou, Suyu & Jie, Qian & Du, Pei & Xu, Yan & Wang, Jianzhou, 2024. "A robust time-varying weight combined model for crude oil price forecasting," Energy, Elsevier, vol. 299(C).
- He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
- Zheng, Xiaolei & Nguyen, Hoang & Bui, Xuan-Nam, 2021. "Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model," Resources Policy, Elsevier, vol. 74(C).
- Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
- Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
- Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
- Choi, Yosoon & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung, 2022. "Optimization of haulage-truck system performance for ore production in open-pit mines using big data and machine learning-based methods," Resources Policy, Elsevier, vol. 75(C).
- Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
- Xiyang Yang & Shiqing Zhang & Xinjun Zhang & Fusheng Yu, 2022. "Polynomial Fuzzy Information Granule-Based Time Series Prediction," Mathematics, MDPI, vol. 10(23), pages 1-21, November.
- Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
- Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
- Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).
- Sahraei, Mohammad Ali & Çodur, Merve Kayaci, 2022. "Prediction of transportation energy demand by novel hybrid meta-heuristic ANN," Energy, Elsevier, vol. 249(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
- Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
- Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Xiaoming Xie & Meiping Li & Du Zhang, 2021. "A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning," Energies, MDPI, vol. 14(21), pages 1-14, November.
- Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
- Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
- Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
- Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
- Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
- Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019.
"Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 12(13), pages 1-12, July.
- Tomasz Serafin & Bartosz Uniejewski & Rafal Weron, 2019. "Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting," WORking papers in Management Science (WORMS) WORMS/19/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, revised 06 Jul 2019.
- Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
- Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
- Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
- Fernandez, Viviana & Pastén-Henríquez, Boris & Tapia-Griñen, Pablo & Wagner, Rodrigo, 2023. "Commodity prices under the threat of operational disruptions: Labor strikes at copper mines," Journal of Commodity Markets, Elsevier, vol. 32(C).
More about this item
Keywords
Copper price; Forecasting price; Natural resources; Extreme learning machine; Optimization algorithms; Hybrid models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002099. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.