IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.02681.html
   My bibliography  Save this paper

Recursive Marginal Quantization of Higher-Order Schemes

Author

Listed:
  • T. A. McWalter
  • R. Rudd
  • J. Kienitz
  • E. Platen

Abstract

Quantization techniques have been applied in many challenging finance applications, including pricing claims with path dependence and early exercise features, stochastic optimal control, filtering problems and efficient calibration of large derivative books. Recursive Marginal Quantization of the Euler scheme has recently been proposed as an efficient numerical method for evaluating functionals of solutions of stochastic differential equations. This method involves recursively quantizing the conditional marginals of the discrete-time Euler approximation of the underlying process. By generalizing this approach, we show that it is possible to perform recursive marginal quantization for two higher-order schemes: the Milstein scheme and a simplified weak order 2.0 scheme. As part of this generalization a simple matrix formulation is presented, allowing efficient implementation. We further extend the applicability of recursive marginal quantization by showing how absorption and reflection at the zero boundary may be incorporated, when this is necessary. To illustrate the improved accuracy of the higher order schemes, various computations are performed using geometric Brownian motion and its generalization, the constant elasticity of variance model. For both processes, we show numerical evidence of improved weak order convergence and we compare the marginal distributions implied by the three schemes to the known analytical distributions. By pricing European, Bermudan and Barrier options, further evidence of improved accuracy of the higher order schemes is demonstrated.

Suggested Citation

  • T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2017. "Recursive Marginal Quantization of Higher-Order Schemes," Papers 1701.02681, arXiv.org.
  • Handle: RePEc:arx:papers:1701.02681
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.02681
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hsu, Y.L. & Lin, T.I. & Lee, C.F., 2008. "Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 60-71.
    2. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    3. Sagna, Abass, 2011. "Pricing of barrier options by marginal functional quantization," Monte Carlo Methods and Applications, De Gruyter, vol. 17(4), pages 371-398, December.
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Gilles Pagès & Abass Sagna, 2015. "Recursive Marginal Quantization of the Euler Scheme of a Diffusion Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 463-498, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fina, Alessandro & Gnoatto, Alessandro & Picarelli, Athena, 2024. "Quantization of stochastic volatility models: Numerical tests and an open source implementation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 29-51.
    2. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2020. "New Weak Error bounds and expansions for Optimal Quantization," Post-Print hal-02361644, HAL.
    3. Giorgia Callegaro & Lucio Fiorin & Andrea Pallavicini, 2021. "Quantization goes polynomial," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 361-376, March.
    4. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    5. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised May 2019.
    6. Bonollo, Michele & Di Persio, Luca & Oliva, Immacolata, 2020. "A quantization approach to the counterparty credit exposure estimation," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 335-356.
    7. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    8. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    9. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    10. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    11. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2018. "Quantization Under the Real-world Measure: Fast and Accurate Valuation of Long-dated Contracts," Papers 1801.07044, arXiv.org, revised Jan 2018.
    12. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2019. "New Weak Error bounds and expansions for Optimal Quantization," Working Papers hal-02361644, HAL.
    13. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    14. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2020. "Robust Product Markovian Quantization," Papers 2006.15823, arXiv.org.
    15. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    16. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Post-Print hal-02434232, HAL.
    17. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    2. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2020. "Robust Product Markovian Quantization," Papers 2006.15823, arXiv.org.
    3. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    4. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    5. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    6. Backwell, Alex, 2021. "Unspanned stochastic volatility from an empirical and practical perspective," Journal of Banking & Finance, Elsevier, vol. 122(C).
    7. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    8. Isabel Casas & Irene Gijbels, 2012. "Unstable volatility: the break-preserving local linear estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 883-904, December.
    9. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    10. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Ofelia Bonesini & Antoine Jacquier & Chloe Lacombe, 2020. "A theoretical analysis of Guyon's toy volatility model," Papers 2001.05248, arXiv.org, revised Nov 2022.
    12. Susanne Griebsch & Uwe Wystup, 2011. "On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 693-709.
    13. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    14. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    15. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    16. Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
    17. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2018. "Quantization Under the Real-world Measure: Fast and Accurate Valuation of Long-dated Contracts," Papers 1801.07044, arXiv.org, revised Jan 2018.
    18. Lucio Fiorin & Gilles Pagès & Abass Sagna, 2019. "Product Markovian Quantization of a Diffusion Process with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1087-1118, December.
    19. José L. Vilar-Zanón & Barbara Rogo, 2024. "Pricing and Hedging Contingent Claims by Entropy Segmentation and Fenchel Duality," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-20, December.
    20. Rodrigue Oeuvray & Pascal Junod, 2013. "On time scaling of semivariance in a jump-diffusion process," Papers 1311.1122, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.02681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.