IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v17y2011i4p371-398n3.html
   My bibliography  Save this article

Pricing of barrier options by marginal functional quantization

Author

Listed:
  • Sagna, Abass

Abstract

No abstract is available for this item.

Suggested Citation

  • Sagna, Abass, 2011. "Pricing of barrier options by marginal functional quantization," Monte Carlo Methods and Applications, De Gruyter, vol. 17(4), pages 371-398, December.
  • Handle: RePEc:bpj:mcmeap:v:17:y:2011:i:4:p:371-398:n:3
    DOI: 10.1515/mcma.2011.015
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2011.015
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2011.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    2. Luschgy, Harald & Pagès, Gilles, 2006. "Functional quantization of a class of Brownian diffusions: A constructive approach," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 310-336, February.
    3. Conze, Antoine & Viswanathan, 1991. "Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    4. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    2. T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2018. "Recursive marginal quantization of higher-order schemes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 693-706, April.
    3. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2020. "Robust Product Markovian Quantization," Papers 2006.15823, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    2. Corlay Sylvain & Pagès Gilles, 2015. "Functional quantization-based stratified sampling methods," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 1-32, March.
    3. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, December.
    4. Brandejsky, Adrien & de Saporta, Benoîte & Dufour, François, 2013. "Optimal stopping for partially observed piecewise-deterministic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3201-3238.
    5. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    6. Maire Sylvain & Tanré Etienne, 2008. "Some new simulations schemes for the evaluation of Feynman–Kac representations," Monte Carlo Methods and Applications, De Gruyter, vol. 14(1), pages 29-51, January.
    7. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    8. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    10. Carlos Veiga & Uwe Wystup & Manuel Esquível, 2012. "Unifying exotic option closed formulas," Review of Derivatives Research, Springer, vol. 15(2), pages 99-128, July.
    11. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    12. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    13. Robert J. Bianchi & Michael E. Drew & Thanula R. Wijeratne, 2010. "Systemic Risk, the TED Spread and Hedge Fund Returns," Discussion Papers in Finance finance:201004, Griffith University, Department of Accounting, Finance and Economics.
    14. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    15. Jiling Cao & Xi Li & Wenjun Zhang, 2023. "Pricing Path-Dependent Options under Stochastic Volatility via Mellin Transform," JRFM, MDPI, vol. 16(10), pages 1-17, October.
    16. Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
    17. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    18. Daehwan Kim & Jin-Yeong Kim, 2011. "Valuing Income-Contingent Loans as Path-Dependent Options," Korean Economic Review, Korean Economic Association, vol. 27, pages 273-291.
    19. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    20. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:17:y:2011:i:4:p:371-398:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.