IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp29-51.html
   My bibliography  Save this article

Quantization of stochastic volatility models: Numerical tests and an open source implementation

Author

Listed:
  • Fina, Alessandro
  • Gnoatto, Alessandro
  • Picarelli, Athena

Abstract

The aim of this paper is to discuss the implementation of the recursive marginal quantization algorithm of Fiorin et al. (2018), to several stochastic volatility models. After recalling the theoretical framework and the main features of the method, we evaluate the performance of the algorithm for the pricing of derivatives. We also discuss an open source implementation of the algorithm. For most models we consider, with the exception of the Stein and Stein model, recursive marginal quantization provides a viable alternative to Monte Carlo simulations.

Suggested Citation

  • Fina, Alessandro & Gnoatto, Alessandro & Picarelli, Athena, 2024. "Quantization of stochastic volatility models: Numerical tests and an open source implementation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 29-51.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:29-51
    DOI: 10.1016/j.matcom.2024.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Bally, Vlad & Pagès, Gilles, 2003. "Error analysis of the optimal quantization algorithm for obstacle problems," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 1-40, July.
    3. T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2018. "Recursive marginal quantization of higher-order schemes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 693-706, April.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2017. "Pricing via recursive quantization in stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 855-872, June.
    6. BALLY Vlad & PAGÈS Gilles & PRINTEMS Jacques, 2001. "A stochastic quantization method for nonlinear problems," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 21-34, December.
    7. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    8. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: calibration and pricing of exotics using product recursive quantization," Quantitative Finance, Taylor & Francis Journals, vol. 22(4), pages 611-629, April.
    9. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    10. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    11. Anne Laure Bronstein & Gilles Pages & Benedikt Wilbertz, 2010. "How to speed up the quantization tree algorithm with an application to swing options," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 995-1007.
    12. Gilles Pagès & Abass Sagna, 2015. "Recursive Marginal Quantization of the Euler Scheme of a Diffusion Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 463-498, November.
    13. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    2. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    3. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    4. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    5. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Post-Print hal-02434232, HAL.
    6. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.
    7. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2020. "New Weak Error bounds and expansions for Optimal Quantization," Post-Print hal-02361644, HAL.
    8. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2019. "New Weak Error bounds and expansions for Optimal Quantization," Working Papers hal-02361644, HAL.
    9. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    10. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    11. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2020. "Robust Product Markovian Quantization," Papers 2006.15823, arXiv.org.
    12. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    13. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised May 2019.
    14. Bonollo, Michele & Di Persio, Luca & Oliva, Immacolata, 2020. "A quantization approach to the counterparty credit exposure estimation," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 335-356.
    15. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    16. Lucio Fiorin & Gilles Pagès & Abass Sagna, 2019. "Product Markovian Quantization of a Diffusion Process with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1087-1118, December.
    17. Giorgia Callegaro & Lucio Fiorin & Andrea Pallavicini, 2021. "Quantization goes polynomial," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 361-376, March.
    18. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.
    19. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    20. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:29-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.