IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.01754.html
   My bibliography  Save this paper

A Quantization Approach to the Counterparty Credit Exposure Estimation

Author

Listed:
  • M. Bonollo
  • L. Di Persio
  • I. Oliva
  • A. Semmoloni

Abstract

During recent years the counterparty risk subject has received a growing attention because of the so called Basel Accord. In particular the Basel III Accord asks the banks to fulfill finer conditions concerning counterparty credit exposures arising from banks' derivatives, securities financing transactions, default and downgrade risks characterizing the Over The Counter (OTC) derivatives market, etc. Consequently the development of effective and more accurate measures of risk have been pushed, particularly focusing on the estimate of the future fair value of derivatives with respect to prescribed time horizon and fixed grid of time buckets. Standard methods used to treat the latter scenario are mainly based on ad hoc implementations of the classic Monte Carlo (MC) approach, which is characterized by a high computational time, strongly dependent on the number of considered assets. This is why many financial players moved to more enhanced Technologies, e.g., grid computing and Graphics Processing Units (GPUs) capabilities. In this paper we show how to implement the quantization technique, in order to accurately estimate both pricing and volatility values. Our approach is tested to produce effective results for the counterparty risk evaluation, with a big improvement concerning required time to run when compared to MC approach.

Suggested Citation

  • M. Bonollo & L. Di Persio & I. Oliva & A. Semmoloni, 2015. "A Quantization Approach to the Counterparty Credit Exposure Estimation," Papers 1503.01754, arXiv.org.
  • Handle: RePEc:arx:papers:1503.01754
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.01754
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luschgy, Harald & Pagès, Gilles, 2006. "Functional quantization of a class of Brownian diffusions: A constructive approach," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 310-336, February.
    2. Walter Schachermayer & Josef Teichmann, 2008. "How Close Are The Option Pricing Formulas Of Bachelier And Black–Merton–Scholes?," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 155-170, January.
    3. Gilles Pagès & Abass Sagna, 2015. "Recursive Marginal Quantization of the Euler Scheme of a Diffusion Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 463-498, November.
    4. T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2018. "Recursive marginal quantization of higher-order schemes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 693-706, April.
    5. Gilles Pag`es & Benedikt Wilbertz, 2011. "GPGPUs in computational finance: Massive parallel computing for American style options," Papers 1101.3228, arXiv.org.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Bonollo & Luca Di Persio & Luca Mammi & Immacolata Oliva, 2017. "Estimating the Counterparty Risk Exposure by using the Brownian Motion Local Time," Papers 1704.03244, arXiv.org.
    2. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    2. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    3. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    4. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.
    5. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    6. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2020. "Robust Product Markovian Quantization," Papers 2006.15823, arXiv.org.
    7. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    8. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Post-Print hal-02434232, HAL.
    9. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    10. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised May 2019.
    11. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.
    12. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    13. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    14. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    15. Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
    16. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    17. Roberto Baviera, 2019. "Back-Of-The-Envelope Swaptions In A Very Parsimonious Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-24, August.
    18. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2018. "Quantization Under the Real-world Measure: Fast and Accurate Valuation of Long-dated Contracts," Papers 1801.07044, arXiv.org, revised Jan 2018.
    19. Ako Doffou & Jimmy E. Hilliard, 2001. "Pricing Currency Options Under Stochastic Interest Rates And Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, December.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.01754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.