Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Michael Giles & Desmond Higham & Xuerong Mao, 2009. "Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff," Finance and Stochastics, Springer, vol. 13(3), pages 403-413, September.
- Christian Bayer & Markus Siebenmorgen & Raul Tempone, 2018. "Smoothing the payoff for efficient computation of Basket option prices," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 491-505, March.
- Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
- Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010.
"A comparison of biased simulation schemes for stochastic volatility models,"
Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
- Roger Lord & Remmert Koekkoek & Dick van Dijk, 2006. "A Comparison of Biased Simulation Schemes for Stochastic Volatility Models," Tinbergen Institute Discussion Papers 06-046/4, Tinbergen Institute, revised 07 Jun 2007.
- Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
- Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdul-Lateef Haji-Ali & Jonathan Spence & Aretha Teckentrup, 2021. "Adaptive Multilevel Monte Carlo for Probabilities," Papers 2107.09148, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
- Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
- Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
- Christian Bayer & Chiheb Ben Hammouda & Ra'ul Tempone, 2021. "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing," Papers 2111.01874, arXiv.org, revised Jun 2022.
- Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
- Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
- Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
- Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
- Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
- Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
- Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
- Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
- Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
- Wenbin Hu & Junzi Zhou, 2017. "Backward simulation methods for pricing American options under the CIR process," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1683-1695, November.
- Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
- Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
- S. T. Tse & Justin W. L. Wan, 2013. "Low-bias simulation scheme for the Heston model by Inverse Gaussian approximation," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 919-937, May.
- Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
- Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
- Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2020-03-30 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.05708. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.