IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.11435.html
   My bibliography  Save this paper

Quantization goes Polynomial

Author

Listed:
  • Giorgia Callegaro
  • Lucio Fiorin
  • Andrea Pallavicini

Abstract

Quantization algorithms have been successfully adopted to option pricing in finance thanks to the high convergence rate of the numerical approximation. In particular, very recently, recursive marginal quantization has been proven to be a flexible and versatile tool when applied to stochastic volatility processes. In this paper we apply for the first time quantization techniques to the family of polynomial processes, by exploiting their peculiar nature. We focus our analysis on the stochastic volatility Jacobi process, by presenting two alternative quantization procedures: the first is a new discretization technique, whose foundation lies on the polynomial structure of the underlying process and which is suitable for vanilla option pricing, the second is based on recursive marginal quantization and it allows for pricing of (vanilla and) exotic derivatives. We prove theoretical results to assess the induced approximation errors, and we describe in numerical examples practical tools for fast vanilla and exotic option pricing.

Suggested Citation

  • Giorgia Callegaro & Lucio Fiorin & Andrea Pallavicini, 2017. "Quantization goes Polynomial," Papers 1710.11435, arXiv.org, revised Dec 2019.
  • Handle: RePEc:arx:papers:1710.11435
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.11435
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2018. "Recursive marginal quantization of higher-order schemes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 693-706, April.
    2. Damir Filipović & Martin Larsson & Sergio Pulido, 2016. "Markov Cubature Rules for Polynomial Processes," Swiss Finance Institute Research Paper Series 16-79, Swiss Finance Institute.
    3. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    4. Gilles Pagès & Abass Sagna, 2015. "Recursive Marginal Quantization of the Euler Scheme of a Diffusion Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 463-498, November.
    5. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    6. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    7. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    2. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    3. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Post-Print hal-02434232, HAL.
    4. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    5. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.
    6. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.
    7. Damir Filipovi'c & Martin Larsson & Sergio Pulido, 2017. "Markov cubature rules for polynomial processes," Papers 1707.06849, arXiv.org, revised Jun 2019.
    8. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    9. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    10. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    11. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    12. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    13. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    14. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2018. "Quantization Under the Real-world Measure: Fast and Accurate Valuation of Long-dated Contracts," Papers 1801.07044, arXiv.org, revised Jan 2018.
    15. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    16. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    17. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2020. "New Weak Error bounds and expansions for Optimal Quantization," Post-Print hal-02361644, HAL.
    18. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    19. Abi Jaber, Eduardo & Bouchard, Bruno & Illand, Camille, 2019. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1726-1748.
    20. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.11435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.