IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v22y2015i5p463-498.html
   My bibliography  Save this article

Recursive Marginal Quantization of the Euler Scheme of a Diffusion Process

Author

Listed:
  • Gilles Pagès
  • Abass Sagna

Abstract

We propose a new approach to quantize the marginals of the discrete Euler diffusion process. The method is built recursively and involves the conditional distribution of the marginals of the discrete Euler process. Analytically, the method raises several questions like the analysis of the induced quadratic quantization error between the marginals of the Euler process and the proposed quantizations. We show in particular that at every discretization step t k of the Euler scheme, this error is bounded by the cumulative quantization errors induced by the Euler operator, from times t 0 = 0 to time t k . For numerics, we restrict our analysis to the one-dimensional setting and show how to compute the optimal grids using a Newton-Raphson algorithm. We then propose a closed formula for the companion weights and the transition probabilities associated to the proposed quantizations. This allows us to quantize in particular diffusion processes in local volatility models by reducing dramatically the computational complexity of the search of optimal quantizers while increasing their computational precision with respect to the algorithms commonly proposed in this framework. Numerical tests are carried out for the Brownian motion and for the pricing of European options in a local volatility model. A comparison with the Monte Carlo simulations shows that the proposed method may sometimes be more efficient (w.r.t. both computational precision and time complexity) than the Monte Carlo method.

Suggested Citation

  • Gilles Pagès & Abass Sagna, 2015. "Recursive Marginal Quantization of the Euler Scheme of a Diffusion Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 463-498, November.
  • Handle: RePEc:taf:apmtfi:v:22:y:2015:i:5:p:463-498
    DOI: 10.1080/1350486X.2015.1091741
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2015.1091741
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2015.1091741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    2. Bonollo, Michele & Di Persio, Luca & Oliva, Immacolata, 2020. "A quantization approach to the counterparty credit exposure estimation," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 335-356.
    3. Giorgia Callegaro & Lucio Fiorin & Andrea Pallavicini, 2021. "Quantization goes polynomial," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 361-376, March.
    4. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    5. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    6. T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2018. "Recursive marginal quantization of higher-order schemes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 693-706, April.
    7. Vincent Lemaire & Thibaut Montes & Gilles Pag`es, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Papers 2001.03101, arXiv.org, revised Jul 2020.
    8. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised May 2019.
    9. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.
    10. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2020. "Robust Product Markovian Quantization," Papers 2006.15823, arXiv.org.
    11. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2022. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Post-Print hal-02434232, HAL.
    12. Gilles Pagès & Thibaut Montes & Vincent Lemaire, 2020. "Stationary Heston model: Calibration and Pricing of exotics using Product Recursive Quantization," Working Papers hal-02434232, HAL.
    13. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2017. "Fast Quantization of Stochastic Volatility Models," Papers 1704.06388, arXiv.org.
    14. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    15. Ralph Rudd & Thomas A. McWalter & Joerg Kienitz & Eckhard Platen, 2018. "Quantization Under the Real-world Measure: Fast and Accurate Valuation of Long-dated Contracts," Papers 1801.07044, arXiv.org, revised Jan 2018.
    16. Lucio Fiorin & Gilles Pagès & Abass Sagna, 2019. "Product Markovian Quantization of a Diffusion Process with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1087-1118, December.
    17. Benjamin Jourdain & Gilles Pagès, 2022. "Convex Order, Quantization and Monotone Approximations of ARCH Models," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2480-2517, December.
    18. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:22:y:2015:i:5:p:463-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.