IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.03018.html
   My bibliography  Save this paper

Approximating explicitly the mean reverting CEV process

Author

Listed:
  • Nikolaos Halidias
  • Ioannis Stamatiou

Abstract

In this paper we want to exploit further the semi-discrete method appeared in Halidias and Stamatiou (2015). We are interested in the numerical solution of mean reverting CEV processes that appear in financial mathematics models and are described as non negative solutions of certain stochastic differential equations with sub-linear diffusion coefficients of the form $(x_t)^q,$ where $\frac{1}{2}

Suggested Citation

  • Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
  • Handle: RePEc:arx:papers:1502.03018
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.03018
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    3. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    4. Alfonsi, Aurélien, 2013. "Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 602-607.
    5. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    6. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    7. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    8. Brennan, Michael J. & Schwartz, Eduardo S., 1980. "Analyzing Convertible Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(4), pages 907-929, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    2. Tan, Jianguo & Chen, Yang & Men, Weiwei & Guo, Yongfeng, 2021. "Positivity and convergence of the balanced implicit method for the nonlinear jump-extended CIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 195-210.
    3. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    4. Halidias Nikolaos & Stamatiou Ioannis S., 2022. "A note on the asymptotic stability of the semi-discrete method for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 28(1), pages 13-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    2. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    4. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    5. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    9. Christiansen, Charlotte, 2010. "Mean reversion in US and international short rates," The North American Journal of Economics and Finance, Elsevier, vol. 21(3), pages 286-296, December.
    10. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    11. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    14. Moreno, Manuel, 1995. "On the term structure of Interbank interest rates: jump-diffusion processes and option pricing," DES - Working Papers. Statistics and Econometrics. WS 7074, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Christensen Bent Jesper & Poulsen Rolf, 2001. "Monte Carlo Improvement of Estimates of the Mean-Reverting Constant Elasticity of Variance Interest Rate Diffusion," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 111-124, December.
    16. Terence D.Agbeyegbe & Elena Goldman, 2005. "Estimation of threshold time series models using efficient jump MCMC," Economics Working Paper Archive at Hunter College 406, Hunter College Department of Economics, revised 2005.
    17. Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    18. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    19. Nowman, K. Ben, 2011. "Gaussian estimation of continuous time diffusions of UK interest rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(8), pages 1618-1624.
    20. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.03018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.