IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.07864.html
   My bibliography  Save this paper

On construction of boundary preserving numerical schemes

Author

Listed:
  • Nikolaos Halidias

Abstract

Our aim in this note is to extend the semi discrete technique by combine it with the split step method. We apply our new method to the Ait-Sahalia model and propose an explicit and positivity preserving numerical scheme.

Suggested Citation

  • Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
  • Handle: RePEc:arx:papers:1601.07864
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.07864
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halidias Nikolaos, 2015. "A new numerical scheme for the CIR process," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 245-253, September.
    2. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    4. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    5. Halidias Nikolaos, 2015. "Constructing positivity preserving numerical schemes for the two-factor CIR model," Monte Carlo Methods and Applications, De Gruyter, vol. 21(4), pages 313-323, December.
    6. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halidias Nikolaos, 2024. "A novel portfolio optimization method and its application to the hedging problem," Monte Carlo Methods and Applications, De Gruyter, vol. 30(3), pages 249-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    2. Xiaoling Wang & Xiaofei Guan & Pei Yin, 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    3. Tan, Jianguo & Chen, Yang & Men, Weiwei & Guo, Yongfeng, 2021. "Positivity and convergence of the balanced implicit method for the nonlinear jump-extended CIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 195-210.
    4. Kang, Ting & Li, Qiang & Zhang, Qimin, 2019. "Numerical analysis of the balanced implicit method for stochastic age-dependent capital system with poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 166-177.
    5. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    6. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    8. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    9. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    10. H. A. Mardones & C. M. Mora, 2020. "First-Order Weak Balanced Schemes for Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 833-852, June.
    11. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Tan, Jianguo & Men, Weiwei & Pei, Yongzhen & Guo, Yongfeng, 2017. "Construction of positivity preserving numerical method for stochastic age-dependent population equations," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 57-64.
    13. Yao, Jinran & Gan, Siqing, 2018. "Stability of the drift-implicit and double-implicit Milstein schemes for nonlinear SDEs," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 294-301.
    14. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    15. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    16. Yin, Zhengwei & Gan, Siqing, 2015. "An error corrected Euler–Maruyama method for stiff stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 630-641.
    17. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    18. Hjalmarsson, Erik, 2003. "Does the Black-Scholes formula work for electricity markets? A nonparametric approach," Working Papers in Economics 101, University of Gothenburg, Department of Economics.
    19. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non-stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    20. Issler, João Victor, 1995. "Estimating the term structure of volatility and fixed income derivative pricing," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 272, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.07864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.