IDEAS home Printed from https://ideas.repec.org/b/uts/finphd/1-2007.html
   My bibliography  Save this book

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Author

Listed:
  • Nicola Bruti-Liberati

Abstract

This thesis concerns the design and analysis of new discrete time approximations for stochastic differential equations (SDEs) driven by Wiener processes and Poisson random measures. In financial modelling, SDEs with jumps are often used to describe the dynamics of state variables such as credit ratings, stock indices, interest rates, exchange rates and electricity prices. The jump component can capture event-driven uncertainties, such as corporate defaults, operational failures or central bank announcements. The thesis proposes new, efficient, and numerically stable strong and weak approximations. Strong approximations provide efficient tools for problems such as filtering, scenario analysis and hedge simulation, while weak approximations are useful for handling problems such as derivative pricing, the evaluation of moments, and the computation of risk measures and expected utilities. The discrete time approximations proposed are divided into regular and jump-adapted schemes. Regular schemes employ time discretizations that do not include the jump times of the Poisson measure. Jump-adapted time discretizations, on the other hand, include these jump times. The first part of the thesis introduces stochastic expansions for jump diffusions and proves new, powerful lemmas providing moment estimates of multiple stochastic integrals. The second part presents strong approximations with a new strong convergence theorem for higher order general approximations. Innovative strong derivative-free and predictor-corrector schemes are derived. Furthermore, the strong convergence of higher order schemes for pure jump SDEs is established under conditions weaker than those required for jump diffusions. The final part of the thesis presents a weak convergence theorem for jump-adapted higher order general approximations. These approximations include new derivative-free, predictor-corrector, and simplified schemes. Finally, highly efficient implementations of simplified weak schemes based on random bit generators and hardware accelerators are developed and tested.

Suggested Citation

  • Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
  • Handle: RePEc:uts:finphd:1-2007
    as

    Download full text from publisher

    File URL: https://opus.lib.uts.edu.au/bitstream/10453/20293/2/Whole02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    4. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    5. Aleksander Janicki, 1996. "Numerical and Statistical Approximation of Stochastic Differential Equations with Non-Gaussian Measures," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9601, December.
    6. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    7. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    8. Kubilius Kestutis & Platen Eckhard, 2002. "Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 83-96, December.
    9. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    10. Bruti-Liberati, Nicola & Martini, Filippo & Piccardi, Massimo & Platen, Eckhard, 2008. "A hardware generator of multi-point distributed random numbers for Monte Carlo simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 45-56.
    11. Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
    12. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    13. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    14. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    15. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    16. Platen, Eckhard & Rebolledo, Rolando, 1985. "Weak convergence of semimartingales and discretisation methods," Stochastic Processes and their Applications, Elsevier, vol. 20(1), pages 41-58, July.
    17. G. N. Milstein & Eckhard Platen & H. Schurz, 1998. "Balanced Implicit Methods for Stiff Stochastic Systems," Published Paper Series 1998-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    18. Platen, Eckhard, 1995. "On weak implicit and predictor-corrector methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 69-76.
    19. Nicolas Merener & Paul Glasserman, 2003. "Numerical solution of jump-diffusion LIBOR market models," Finance and Stochastics, Springer, vol. 7(1), pages 1-27.
    20. Platen, Eckhard, 2000. "A minimal financial market model," SFB 373 Discussion Papers 2000,91, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    21. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    22. Guyon, Julien, 2006. "Euler scheme and tempered distributions," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 877-904, June.
    23. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    24. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    25. Higham,Desmond J., 2004. "An Introduction to Financial Option Valuation," Cambridge Books, Cambridge University Press, number 9780521547574, October.
    26. Nicola Bruti Liberati & Eckhard Platen, 2004. "On the Efficiency of Simplified Weak Taylor Schemes for Monte Carlo Simulation in Finance," Research Paper Series 114, Quantitative Finance Research Centre, University of Technology, Sydney.
    27. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    28. Remigijus Mikulevicius & Eckhard Platen, 1988. "Time Discrete Taylor Approximations for Ito Processes with Jump Component," Published Paper Series 1988-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    29. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    30. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    31. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    32. NicolaBruti-Liberati & Eckhard Platen, 2007. "Strong approximations of stochastic differential equations with jumps," Published Paper Series 2007-7, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    33. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    34. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    35. Y. Samuelides & E. Nahum, 2001. "A tractable market model with jumps for pricing short-term interest rate derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 270-283.
    36. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    37. Mark Joshi & Alan Stacey, 2008. "New and robust drift approximations for the LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 427-434.
    38. repec:dau:papers:123456789/1433 is not listed on IDEAS
    39. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    40. Rubenthaler, Sylvain & Wiktorsson, Magnus, 2003. "Improved convergence rate for the simulation of stochastic differential equations driven by subordinated Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 1-26, November.
    41. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati & Eckhard Platen, 2006. "On Weak Predictor-Corrector Schemes for Jump-Diffusion Processes in Finance," Research Paper Series 179, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    4. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    5. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    6. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    7. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
    10. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    11. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2005. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton with Jumps," Research Paper Series 167, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    13. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    14. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    15. Nicola Bruti-Liberati & Eckhard Platen, 2005. "On the Strong Approximation of Jump-Diffusion Processes," Research Paper Series 157, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlogl, 2007. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 365-399.
    17. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    18. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    19. Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Foreign equity option pricing under stochastic volatility model with double jumps," Economic Modelling, Elsevier, vol. 28(4), pages 1857-1863, July.
    20. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:finphd:1-2007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.