IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v182y2021icp195-210.html
   My bibliography  Save this article

Positivity and convergence of the balanced implicit method for the nonlinear jump-extended CIR model

Author

Listed:
  • Tan, Jianguo
  • Chen, Yang
  • Men, Weiwei
  • Guo, Yongfeng

Abstract

In this paper, we extend the balanced implicit method (BIM) to nonlinear jump-extended Cox–Ingersoll–Ross (CIR) model. Firstly, we construct the numerical method BIM for this nonlinear jump-extended CIR model and prove the positivity of the proposed method for the model. Furthermore the strong convergence of the BIM is proved in L1 and L2 sense. Finally, we give two examples to illustrate the positivity and convergence of the BIM; numerical results verify the theoretical findings.

Suggested Citation

  • Tan, Jianguo & Chen, Yang & Men, Weiwei & Guo, Yongfeng, 2021. "Positivity and convergence of the balanced implicit method for the nonlinear jump-extended CIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 195-210.
  • Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:195-210
    DOI: 10.1016/j.matcom.2020.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.
    2. N. Halidias & I. S. Stamatiou, 2015. "Approximating Explicitly the Mean-Reverting CEV Process," Journal of Probability and Statistics, Hindawi, vol. 2015, pages 1-20, November.
    3. Tan, Jianguo & Men, Weiwei & Pei, Yongzhen & Guo, Yongfeng, 2017. "Construction of positivity preserving numerical method for stochastic age-dependent population equations," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 57-64.
    4. Zhang, Mengqing & Zhang, Qimin, 2019. "A positivity preserving numerical method for stochastic R&D model," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 193-203.
    5. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    6. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    2. Kang, Ting & Li, Qiang & Zhang, Qimin, 2019. "Numerical analysis of the balanced implicit method for stochastic age-dependent capital system with poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 166-177.
    3. Li, Yan & Zhang, Qimin, 2020. "The balanced implicit method of preserving positivity for the stochastic SIQS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    4. Halidias Nikolaos, 2016. "On the construction of boundary preserving numerical schemes," Monte Carlo Methods and Applications, De Gruyter, vol. 22(4), pages 277-289, December.
    5. Weng, Lihui & Liu, Wei, 2019. "Invariant measures of the Milstein method for stochastic differential equations with commutative noise," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 169-176.
    6. Gamboa, M. & López-García, M. & Lopez-Herrero, M.J., 2024. "On the exact and population bi-dimensional reproduction numbers in a stochastic SVIR model with imperfect vaccine," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    7. Xiaoling Wang & Xiaofei Guan & Pei Yin, 2020. "A New Explicit Magnus Expansion for Nonlinear Stochastic Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    8. Shi, Chunmei, 2021. "The convergence and stability of full discretization scheme for stochastic age-structured population models," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    9. Halidias Nikolaos & Stamatiou Ioannis S., 2022. "A note on the asymptotic stability of the semi-discrete method for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 28(1), pages 13-25, March.
    10. Avaji, M. & Jodayree Akbarfam, A. & Haghighi, A., 2019. "Stability analysis of high order Runge–Kutta methods for index 1 stochastic differential-algebraic equations with scalar noise," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    11. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    12. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    13. Sun, Xianming & Gan, Siqing & Vanmaele, Michèle, 2015. "Analytical approximation for distorted expectations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 246-252.
    14. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.
    15. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    16. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    17. H. A. Mardones & C. M. Mora, 2020. "First-Order Weak Balanced Schemes for Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 833-852, June.
    18. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Tan, Jianguo & Men, Weiwei & Pei, Yongzhen & Guo, Yongfeng, 2017. "Construction of positivity preserving numerical method for stochastic age-dependent population equations," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 57-64.
    20. Yao, Jinran & Gan, Siqing, 2018. "Stability of the drift-implicit and double-implicit Milstein schemes for nonlinear SDEs," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 294-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:195-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.