IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.01658.html
   My bibliography  Save this paper

Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation

Author

Listed:
  • Michael Ho
  • Zheng Sun
  • Jack Xin

Abstract

It is well known that the out-of-sample performance of Markowitz's mean-variance portfolio criterion can be negatively affected by estimation errors in the mean and covariance. In this paper we address the problem by regularizing the mean-variance objective function with a weighted elastic net penalty. We show that the use of this penalty can be motivated by a robust reformulation of the mean-variance criterion that directly accounts for parameter uncertainty. With this interpretation of the weighted elastic net penalty we derive data driven techniques for calibrating the weighting parameters based on the level of uncertainty in the parameter estimates. We test our proposed technique on US stock return data and our results show that the calibrated weighted elastic net penalized portfolio outperforms both the unpenalized portfolio and uniformly weighted elastic net penalized portfolio. This paper also introduces a novel Adaptive Support Split-Bregman approach which leverages the sparse nature of $\ell_{1}$ penalized portfolios to efficiently compute a solution of our proposed portfolio criterion. Numerical results show that this modification to the Split-Bregman algorithm results in significant improvements in computational speed compared with other techniques.

Suggested Citation

  • Michael Ho & Zheng Sun & Jack Xin, 2015. "Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation," Papers 1502.01658, arXiv.org, revised Oct 2015.
  • Handle: RePEc:arx:papers:1502.01658
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.01658
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Barry, Christopher B, 1974. "Portfolio Analysis under Uncertain Means, Variances, and Covariances," Journal of Finance, American Finance Association, vol. 29(2), pages 515-522, May.
    4. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    5. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    8. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    9. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    10. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    11. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Lefebvre & Gregoire Loeper & Huy^en Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Papers 2009.08214, arXiv.org, revised Sep 2020.
    2. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    3. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    4. William Lefebvre & Grégoire Loeper & Huyên Pham, 2020. "Mean-Variance Portfolio Selection with Tracking Error Penalization," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    5. Willliam Lefebvre & Gregoire Loeper & Huyên Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Working Papers hal-02941289, HAL.
    6. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    7. Wenpin Tang & Xiao Xu & Xun Yu Zhou, 2021. "Asset Selection via Correlation Blockmodel Clustering," Papers 2103.14506, arXiv.org, revised Aug 2021.
    8. Peter Nystrup & Henrik Madsen & Erik Lindström, 2018. "Dynamic portfolio optimization across hidden market regimes," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 83-95, January.
    9. Stefania Corsaro & Valentina Simone, 2019. "Adaptive $$l_1$$ l 1 -regularization for short-selling control in portfolio selection," Computational Optimization and Applications, Springer, vol. 72(2), pages 457-478, March.
    10. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2021. "Sparse factor model based on trend filtering," Annals of Operations Research, Springer, vol. 306(1), pages 321-342, November.
    11. Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.
    12. Stefania Corsaro & Valentina De Simone & Zelda Marino & Francesca Perla, 2020. "$$l_1$$ l 1 -Regularization for multi-period portfolio selection," Annals of Operations Research, Springer, vol. 294(1), pages 75-86, November.
    13. Stefania Corsaro & Valentina De Simone, 2018. "Adaptive l1-regularization for short-selling control in portfolio selection," Papers 1808.00982, arXiv.org.
    14. Roujia Li & Jia Liu, 2022. "Online Portfolio Selection with Long-Short Term Forecasting," SN Operations Research Forum, Springer, vol. 3(4), pages 1-15, December.
    15. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    16. Stefania Corsaro & Valentina De Simone & Zelda Marino, 2021. "Fused Lasso approach in portfolio selection," Annals of Operations Research, Springer, vol. 299(1), pages 47-59, April.
    17. Farshad Noravesh, 2022. "Sparse Non-Convex Optimization For Higher Moment Portfolio Management," Papers 2201.01227, arXiv.org, revised Jan 2022.
    18. Xu, Shuzhe & Zhang, Chuanlong & Hong, Don, 2022. "BERT-based NLP techniques for classification and severity modeling in basic warranty data study," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 57-67.
    19. Anubha Goel & Damir Filipovi'c & Puneet Pasricha, 2024. "Sparse Portfolio Selection via Topological Data Analysis based Clustering," Papers 2401.16920, arXiv.org, revised Dec 2024.
    20. Stefania Corsaro & Valentina De Simone & Zelda Marino & Salvatore Scognamiglio, 2022. "l 1 -Regularization in Portfolio Selection with Machine Learning," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    21. Yizun Lin & Yongxin He & Zhao-Rong Lai, 2024. "A Krasnoselskii-Mann Proximity Algorithm for Markowitz Portfolios with Adaptive Expected Return Level," Papers 2409.13608, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    2. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    3. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    4. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    5. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    6. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    7. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.
    8. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    9. Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
    10. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    11. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    12. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    13. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    14. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    15. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    16. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    17. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    18. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    19. Oikonomou, Ioannis & Platanakis, Emmanouil & Sutcliffe, Charles, 2018. "Socially responsible investment portfolios: Does the optimization process matter?," The British Accounting Review, Elsevier, vol. 50(4), pages 379-401.
    20. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.01658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.