IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.07016.html
   My bibliography  Save this paper

Data-driven integration of norm-penalized mean-variance portfolios

Author

Listed:
  • Andrew Butler
  • Roy H. Kwon

Abstract

Mean-variance optimization (MVO) is known to be sensitive to estimation error in its inputs. Norm penalization of MVO programs is a regularization technique that can mitigate the adverse effects of estimation error. We augment the standard MVO program with a convex combination of parameterized $L_1$ and $L_2$-norm penalty functions. The resulting program is a parameterized quadratic program (QP) whose dual is a box-constrained QP. We make use of recent advances in neural network architecture for differentiable QPs and present a data-driven framework for optimizing parameterized norm-penalties to minimize the downstream MVO objective. We present a novel technique for computing the derivative of the optimal primal solution with respect to the parameterized $L_1$-norm penalty by implicit differentiation of the dual program. The primal solution is then recovered from the optimal dual variables. Historical simulations using US stocks and global futures data demonstrate the benefit of the data-driven optimization approach.

Suggested Citation

  • Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:2112.07016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.07016
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Michaud, Richard O. & Michaud, Robert O., 2008. "Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation," OUP Catalogue, Oxford University Press, edition 2, number 9780195331912.
    4. Sebastián Ceria & Robert A Stubbs, 2006. "Incorporating estimation errors into portfolio selection: Robust portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 7(2), pages 109-127, July.
    5. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    8. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    9. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    10. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    11. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    12. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    13. Michael Ho & Zheng Sun & Jack Xin, 2015. "Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation," Papers 1502.01658, arXiv.org, revised Oct 2015.
    14. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    15. Philipp J. Kremer & Sangkyun Lee & Malgorzata Bogdan & Sandra Paterlini, 2017. "Sparse Portfolio Selection via the sorted $\ell_{1}$-Norm," Papers 1710.02435, arXiv.org.
    16. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    17. Raphael Benichou & Yves Lemp'eri`ere & Emmanuel S'eri'e & Julien Kockelkoren & Philip Seager & Jean-Philippe Bouchaud & Marc Potters, 2016. "Agnostic Risk Parity: Taming Known and Unknown-Unknowns," Papers 1610.08818, arXiv.org.
    18. Jobson, J. D. & Korkie, Bob, 1982. "Potential performance and tests of portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 10(4), pages 433-466, December.
    19. Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
    20. Andrew Butler & Roy H. Kwon, 2021. "Integrating prediction in mean-variance portfolio optimization," Papers 2102.09287, arXiv.org, revised Nov 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    2. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2013. "Regularized robust optimization: the optimal portfolio execution case," Computational Optimization and Applications, Springer, vol. 55(2), pages 341-377, June.
    3. Thomas Schmelzer & Raphael Hauser, 2013. "Seven Sins in Portfolio Optimization," Papers 1310.3396, arXiv.org.
    4. Ban Kawas & Aurelie Thiele, 2017. "Log-robust portfolio management with parameter ambiguity," Computational Management Science, Springer, vol. 14(2), pages 229-256, April.
    5. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    6. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    7. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
    8. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    9. Andrew Butler & Roy H. Kwon, 2021. "Integrating prediction in mean-variance portfolio optimization," Papers 2102.09287, arXiv.org, revised Nov 2022.
    10. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    11. Raphael Hauser & Vijay Krishnamurthy & Reha Tutuncu, 2013. "Relative Robust Portfolio Optimization," Papers 1305.0144, arXiv.org, revised May 2013.
    12. Hongxin Zhao & Yilun Jiang & Yizhou Yang, 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    13. Gregory, Christine & Darby-Dowman, Ken & Mitra, Gautam, 2011. "Robust optimization and portfolio selection: The cost of robustness," European Journal of Operational Research, Elsevier, vol. 212(2), pages 417-428, July.
    14. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    15. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    16. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    17. Ramesh Adhikari & Kyle J. Putnam & Humnath Panta, 2020. "Robust Optimization-Based Commodity Portfolio Performance," IJFS, MDPI, vol. 8(3), pages 1-16, September.
    18. António Alberto Santos & Ana Margarida Monteiro & Rui Pascoal, 2014. "Portfolio Choice under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison," GEMF Working Papers 2014-25, GEMF, Faculty of Economics, University of Coimbra.
    19. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    20. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.07016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.