IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1915-d438593.html
   My bibliography  Save this article

Mean-Variance Portfolio Selection with Tracking Error Penalization

Author

Listed:
  • William Lefebvre

    (BNP Paribas Global Markets, 20 Boulevard des Italiens, 75009 Paris, France
    Building Sophie Germain, Statistique et Modélisation (LPSM, UMR CNRS 8001), Laboratoire de Probabilités, Université de Paris and Sorbonne Université, Avenue de France, 75013 Paris, France)

  • Grégoire Loeper

    (BNP Paribas Global Markets, 20 Boulevard des Italiens, 75009 Paris, France
    School of Mathematics, Monash University, Clayton, Victoria 3800, Australia)

  • Huyên Pham

    (Building Sophie Germain, Statistique et Modélisation (LPSM, UMR CNRS 8001), Laboratoire de Probabilités, Université de Paris and Sorbonne Université, Avenue de France, 75013 Paris, France)

Abstract

This paper studies a variation of the continuous-time mean-variance portfolio selection where a tracking-error penalization is added to the mean-variance criterion. The tracking error term penalizes the distance between the allocation controls and a reference portfolio with same wealth and fixed weights. Such consideration is motivated as follows: (i) On the one hand, it is a way to robustify the mean-variance allocation in the case of misspecified parameters, by “fitting" it to a reference portfolio that can be agnostic to market parameters; (ii) On the other hand, it is a procedure to track a benchmark and improve the Sharpe ratio of the resulting portfolio by considering a mean-variance criterion in the objective function. This problem is formulated as a McKean–Vlasov control problem. We provide explicit solutions for the optimal portfolio strategy and asymptotic expansions of the portfolio strategy and efficient frontier for small values of the tracking error parameter. Finally, we compare the Sharpe ratios obtained by the standard mean-variance allocation and the penalized one for four different reference portfolios: equal-weights, minimum-variance, equal risk contributions and shrinking portfolio. This comparison is done on a simulated misspecified model, and on a backtest performed with historical data. Our results show that in most cases, the penalized portfolio outperforms in terms of Sharpe ratio both the standard mean-variance and the reference portfolio.

Suggested Citation

  • William Lefebvre & Grégoire Loeper & Huyên Pham, 2020. "Mean-Variance Portfolio Selection with Tracking Error Penalization," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1915-:d:438593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    2. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    3. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Bayesian Learning For The Markowitz Portfolio Selection Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-40, November.
    4. Michael Ho & Zheng Sun & Jack Xin, 2015. "Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation," Papers 1502.01658, arXiv.org, revised Oct 2015.
    5. Qian Lin & Frank Riedel, 2014. "Optimal consumption and portfolio choice with ambiguity," Papers 1401.1639, arXiv.org.
    6. Amine Ismail & Huyên Pham, 2019. "Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 174-207, January.
    7. repec:dau:papers:123456789/4688 is not listed on IDEAS
    8. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    9. Ivan Guo & Nicolas Langrené & Gregoire Loeper & Wei Ning, 2020. "Robust utility maximization under model uncertainty via a penalization approach," Working Papers hal-02910261, HAL.
    10. Caihua Chen & Xindan Li & Caleb Tolman & Suyang Wang & Yinyu Ye, 2013. "Sparse Portfolio Selection via Quasi-Norm Regularization," Papers 1312.6350, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apichat Chaweewanchon & Rujira Chaysiri, 2022. "Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning," IJFS, MDPI, vol. 10(3), pages 1-19, August.
    2. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Papers 2112.11059, arXiv.org, revised Nov 2022.
    3. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection," Working Papers hal-03498263, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Lefebvre & Gregoire Loeper & Huy^en Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Papers 2009.08214, arXiv.org, revised Sep 2020.
    2. Willliam Lefebvre & Gregoire Loeper & Huyên Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Working Papers hal-02941289, HAL.
    3. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    4. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    5. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    6. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    7. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    8. Stefania Corsaro & Valentina De Simone & Zelda Marino & Francesca Perla, 2020. "$$l_1$$ l 1 -Regularization for multi-period portfolio selection," Annals of Operations Research, Springer, vol. 294(1), pages 75-86, November.
    9. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    10. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
    11. Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.
    12. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    13. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    14. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    15. Stefania Corsaro & Valentina Simone, 2019. "Adaptive $$l_1$$ l 1 -regularization for short-selling control in portfolio selection," Computational Optimization and Applications, Springer, vol. 72(2), pages 457-478, March.
    16. Jingnan Chen & Gengling Dai & Ning Zhang, 2020. "An application of sparse-group lasso regularization to equity portfolio optimization and sector selection," Annals of Operations Research, Springer, vol. 284(1), pages 243-262, January.
    17. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.
    18. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    19. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    20. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1915-:d:438593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.