IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.01227.html
   My bibliography  Save this paper

Sparse Non-Convex Optimization For Higher Moment Portfolio Management

Author

Listed:
  • Farshad Noravesh

Abstract

One of the reasons that higher order moment portfolio optimization methods are not fully used by practitioners in investment decisions is the complexity that these higher moments create by making the optimization problem nonconvex. Many few methods and theoretical results exists in the literature, but the present paper uses the method of successive convex approximation for the mean-variance-skewness problem.

Suggested Citation

  • Farshad Noravesh, 2022. "Sparse Non-Convex Optimization For Higher Moment Portfolio Management," Papers 2201.01227, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2201.01227
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.01227
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    2. Yongjae Lee & Min Jeong Kim & Jang Ho Kim & Ju Ri Jang & Woo Chang Kim, 2020. "Sparse and robust portfolio selection via semi-definite relaxation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 687-699, May.
    3. Michael Ho & Zheng Sun & Jack Xin, 2015. "Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation," Papers 1502.01658, arXiv.org, revised Oct 2015.
    4. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxin Zhao & Lingchen Kong & Hou-Duo Qi, 2021. "Optimal portfolio selections via $$\ell _{1, 2}$$ ℓ 1 , 2 -norm regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 853-881, December.
    2. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    3. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    4. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    5. Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
    6. Pier Francesco Procacci & Tomaso Aste, 2022. "Portfolio optimization with sparse multivariate modeling," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 445-465, October.
    7. Gaete, Michael & Herrera, Rodrigo, 2023. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," Journal of Commodity Markets, Elsevier, vol. 32(C).
    8. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
    9. Vasyl Golosnoy & Nestor Parolya, 2017. "‘To have what they are having’: portfolio choice for mimicking mean–variance savers," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1645-1653, November.
    10. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    11. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    12. Philipp J. Kremer & Andreea Talmaciu & Sandra Paterlini, 2018. "Risk minimization in multi-factor portfolios: What is the best strategy?," Annals of Operations Research, Springer, vol. 266(1), pages 255-291, July.
    13. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    14. Llorens-Terrazas, Jordi & Brownlees, Christian, 2023. "Projected Dynamic Conditional Correlations," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1761-1776.
    15. Hongxin Zhao & Yilun Jiang & Yizhou Yang, 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    16. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    17. Giovanni Bonaccolto, 2021. "Quantile– based portfolios: post– model– selection estimation with alternative specifications," Computational Management Science, Springer, vol. 18(3), pages 355-383, July.
    18. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
    19. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    20. Taras Bodnar & Nikolaus Hautsch & Yarema Okhrin & Nestor Parolya, 2024. "Consistent Estimation of the High-Dimensional Efficient Frontier," Papers 2409.15103, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.01227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.