IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/131.html
   My bibliography  Save this paper

Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: an Unconditional MTE Approach

Author

Listed:
  • Julian Martinez-Iriarte

    (Department of Economics UC Santa Cruz)

  • YiXiao Sun

    (Department of Economics UC San Diego)

Abstract

This paper studies identification and estimation of unconditional policy effects when treatment status is binary and endogenous. We introduce a new class of unconditional marginal treatment effects (MTE) based on the influence function of the functional underlying the policy target. We show that an unconditional policy effect can be represented as a weighted average of the newly defined unconditional MTEs over the individuals who are indifferent about their treatment status. We provide conditions for point identification of the unconditional policy effects. When a quantile is the functional of interest, we characterize the asymptotic bias of the unconditional quantile regression (UQR) estimator that ignores the endogeneity of the treatment and elaborate on the channels that the endogeneity can render the UQR estimator inconsistent. We show that, even if the treatment status is exogenous, the UQR estimator can still be inconsistent when there are common covariates affecting both the treatment status and the outcome variable. To overcome the inconsistency of the UQR estimator, we introduce the UNconditional Instrumental Quantile Estimator (UNIQUE) and establish its consistency and asymptotic distri- bution. In the empirical application, we estimate the effect of changing college enrollment status, induced by higher tuition subsidy, on the quantiles of the wage distribution.

Suggested Citation

  • Julian Martinez-Iriarte & YiXiao Sun, 2022. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: an Unconditional MTE Approach," Working Papers 131, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:131
    as

    Download full text from publisher

    File URL: https://rednie.eco.unc.edu.ar/files/DT/131.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez-Iriarte, Julián & Montes-Rojas, Gabriel & Sun, Yixiao, 2024. "Unconditional effects of general policy interventions," Journal of Econometrics, Elsevier, vol. 238(2).
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    4. Jinyong Hahn & Geert Ridder, 2013. "Asymptotic Variance of Semiparametric Estimators With Generated Regressors," Econometrica, Econometric Society, vol. 81(1), pages 315-340, January.
    5. Martinez-Iriarte, Julian & Montes-Rojas, Gabriel & Sun, Yixiao, 2022. "Location-Scale and Compensated Effects in Unconditional Quantile Regressions," University of California at San Diego, Economics Working Paper Series qt89z1w74z, Department of Economics, UC San Diego.
    6. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    7. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    8. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, September.
    9. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    10. Maximilian Kasy, 2016. "Partial Identification, Distributional Preferences, and the Welfare Ranking of Policies," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 111-131, March.
    11. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    12. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    13. Xiang Zhou & Yu Xie, 2019. "Marginal Treatment Effects from a Propensity Score Perspective," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 3070-3084.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Alejo & Antonio F. Galvao & Julián Martinez-Iriarte & Gabriel Montes-Rojas, 2023. "Unconditional Quantile Partial Effects via Conditional Quantile Regression," Working Papers 217, Red Nacional de Investigadores en Economía (RedNIE).
    2. Julian Martinez-Iriarte, 2023. "Sensitivity Analysis in Unconditional Quantile Effects," Papers 2303.14298, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian Martinez-Iriarte & Yixiao Sun, 2020. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: An Unconditional MTE Approach," Papers 2010.15864, arXiv.org, revised Aug 2024.
    2. Martínez-Iriarte, Julian & Sun, Yixiao, 2021. "Identification and Estimation of Unconditional Policy Effects of an Endogenous Binary Treatment: an Unconditional MTE Approach," University of California at San Diego, Economics Working Paper Series qt2bc57830, Department of Economics, UC San Diego.
    3. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    4. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    5. Songnian Chen & Shakeeb Khan & Xun Tang, 2022. "Endogeneity in Weakly Separable Models without Monotonicity," Papers 2208.05047, arXiv.org.
    6. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    7. Chen, Songnian & Khan, Shakeeb & Tang, Xun, 2024. "Endogeneity in weakly separable models without monotonicity," Journal of Econometrics, Elsevier, vol. 238(1).
    8. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    9. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    10. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    11. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    12. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    13. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    14. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    15. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    16. Karim Chalak & Halbert White, 2011. "Viewpoint: An extended class of instrumental variables for the estimation of causal effects," Canadian Journal of Economics, Canadian Economics Association, vol. 44(1), pages 1-51, February.
    17. Spanos, Yiannis E., 2021. "Exploring heterogeneous returns to collaborative R&D: A marginal treatment effects perspective," Research Policy, Elsevier, vol. 50(5).
    18. Hsu, Yu-Chin & Huang, Ta-Cheng & Xu, Haiqing, 2023. "Testing For Unobserved Heterogeneous Treatment Effects With Observational Data," Econometric Theory, Cambridge University Press, vol. 39(3), pages 582-622, June.
    19. Belskaya, Olga & Peter, Klara Sabirianova & Posso, Christian, 2014. "College Expansion and the Marginal Returns to Education: Evidence from Russia," IZA Discussion Papers 8735, Institute of Labor Economics (IZA).
    20. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    marginal treatment effect; marginal policy-relevant treatment effect; selection models; instrumental variables; unconditional policy effect; unconditional quantile regressions.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.