Unbalanced distributed estimation and inference for precision matrices
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dungang Liu & Regina Y. Liu & Minge Xie, 2015. "Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 326-340, March.
- Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
- Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
- Xie, Minge & Singh, Kesar & Strawderman, William E., 2011. "Confidence Distributions and a Unifying Framework for Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 320-333.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
- Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
- Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
- Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
- Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
- Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
- Banerjee, Sayantan & Akbani, Rehan & Baladandayuthapani, Veerabhadran, 2019. "Spectral clustering via sparse graph structure learning with application to proteomic signaling networks in cancer," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 46-69.
- Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Liu, Xuhua & Li, Na & Hu, Yuqin, 2015. "Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 136-142.
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Byrd, Michael & Nghiem, Linh H. & McGee, Monnie, 2021. "Bayesian regularization of Gaussian graphical models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Xuhua Liu & Xingzhong Xu, 2016. "Confidence distribution inferences in one-way random effects model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 59-74, March.
- Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.
- Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
- Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
- Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
- He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023.
"A higher-order correct fast moving-average bootstrap for dependent data,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
- Davide La Vecchia & Alban Moor & Olivier Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Papers 2001.04867, arXiv.org, revised Jan 2022.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2020. "A higher-order correct fast moving-average bootstrap for dependent data," Working Papers unige:129395, University of Geneva, Geneva School of Economics and Management.
- Davide La Vecchia & Alban Moor & O. Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Swiss Finance Institute Research Paper Series 20-01, Swiss Finance Institute.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016.
"Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk,"
Papers
1607.00286, arXiv.org, revised Oct 2019.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers 54/17, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers CWP54/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
More about this item
Keywords
Gaussian graphical models ; Precision matrix ; Lasso penalization ; Unbalanced distributed setting ; De-biased estimator ; Confidence distribution;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2022-02-28 (Econometrics)
- NEP-ORE-2022-02-28 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2021031. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.