IDEAS home Printed from https://ideas.repec.org/p/gnv/wpgsem/unige129395.html
   My bibliography  Save this paper

A higher-order correct fast moving-average bootstrap for dependent data

Author

Listed:
  • La Vecchia, Davide
  • Moor, Alban
  • Scaillet, Olivier

Abstract

We develop and implement a novel fast bootstrap for dependent data. Our scheme is based on the i.i.d. resampling of the smoothed moment indicators. We characterize the class of parametric and semi-parametric estimation problems for which the method is valid. We show the asymptotic refinements of the proposed procedure, proving that it is higher-order correct under mild assumptions on the time series, the estimating functions, and the smoothing kernel. We illustrate the applicability and the advantages of our procedure for Generalized Empirical Likelihood estimation. As a by-product, our fast bootstrap provides higher-order correct asymptotic confidence distributions. Monte Carlo simulations on an autoregressive conditional duration model provide numerical evidence that the novel bootstrap yields higher-order accurate confidence intervals. A real-data application on dynamics of trading volume of stocks illustrates the advantage of our method over the routinely-applied first-order asymptotic theory, when the underlying distribution of the test statistic is skewed or fat-tailed.

Suggested Citation

  • La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2020. "A higher-order correct fast moving-average bootstrap for dependent data," Working Papers unige:129395, University of Geneva, Geneva School of Economics and Management.
  • Handle: RePEc:gnv:wpgsem:unige:129395
    as

    Download full text from publisher

    File URL: https://luniarchidoc4.unige.ch/archive-ouverte/unige:129395/ATTACHMENT01
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stanislav Anatolyev, 2005. "GMM, GEL, Serial Correlation, and Asymptotic Bias," Econometrica, Econometric Society, vol. 73(3), pages 983-1002, May.
    2. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    3. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    4. Elise Coudin & Jean-Marie Dufour, 2017. "Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogenous dependent errors," CIRANO Working Papers 2017s-06, CIRANO.
    5. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    6. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    7. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    8. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    9. Otsu, Taisuke, 2006. "Generalized Empirical Likelihood Inference For Nonlinear And Time Series Models Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 22(3), pages 513-527, June.
    10. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    11. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    12. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    13. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    14. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    15. Brown, Bryan W & Newey, Whitney K, 2002. "Generalized Method of Moments, Efficient Bootstrapping, and Improved Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 507-517, October.
    16. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    17. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    18. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    20. Li, David X & Turtle, H J, 2000. "Semiparametric ARCH Models: An Estimating Function Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 174-186, April.
    21. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    22. F Bravo, 2008. "Effcient M-estimators with auxiliary information," Discussion Papers 08/26, Department of Economics, University of York.
    23. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    24. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    25. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    26. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    27. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    28. Bravo, Francesco, 2004. "Empirical Likelihood Based Inference With Applications To Some Econometric Models," Econometric Theory, Cambridge University Press, vol. 20(2), pages 231-264, April.
    29. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    30. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    31. Armstrong, Timothy B. & Bertanha, Marinho & Hong, Han, 2014. "A fast resample method for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 179(2), pages 128-133.
    32. Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
    33. Hong, H. & Scaillet, O., 2006. "A fast subsampling method for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 133(2), pages 557-578, August.
    34. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    35. Jan Hannig & Hari Iyer & Randy C. S. Lai & Thomas C. M. Lee, 2016. "Generalized Fiducial Inference: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1346-1361, July.
    36. Xie, Minge & Singh, Kesar & Strawderman, William E., 2011. "Confidence Distributions and a Unifying Framework for Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 320-333.
    37. Politis, Dimitris N., 2011. "Higher-Order Accurate, Positive Semidefinite Estimation Of Large-Sample Covariance And Spectral Density Matrices," Econometric Theory, Cambridge University Press, vol. 27(4), pages 703-744, August.
    38. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    39. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    40. Piero Veronese & Eugenio Melilli, 2015. "Fiducial and Confidence Distributions for Real Exponential Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 471-484, June.
    41. Elise Coudin & Jean-Marie Dufour, 2020. "Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogeneous dependent errors," Econometric Reviews, Taylor & Francis Journals, vol. 39(8), pages 763-791, September.
    42. Nikolaus Hautsch, 2012. "Econometrics of Financial High-Frequency Data," Springer Books, Springer, number 978-3-642-21925-2, December.
    43. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    44. Davidson, Russell & MacKinnon, James G, 1999. "Bootstrap Testing in Nonlinear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 487-508, May.
    45. Wilhelm, Daniel, 2015. "Optimal Bandwidth Selection For Robust Generalized Method Of Moments Estimation," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1054-1077, October.
    46. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    47. Francesco Bravo, 2005. "Blockwise empirical entropy tests for time series regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 185-210, March.
    48. Salibian-Barrera, Matias & Van Aelst, Stefan, 2008. "Robust model selection using fast and robust bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5121-5135, August.
    49. Lahiri, Soumendra Nath, 1996. "On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 42-59, January.
    50. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Parente & Richard J. Smith, 2024. "Implied probability kernel block bootstrap for time series moment condition models," CeMMAP working papers 08/24, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    3. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    4. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    5. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    6. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    7. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    8. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    9. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    10. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    11. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.
    12. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    13. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    14. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    15. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    16. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.
    17. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    18. Whitney K. Newey & Joaquim J.S. Ramalho & Richard J. Smith, 2003. "A symptotic Bias for GMM and GEL Estimators with Estimated Nuisance Parameter," Economics Working Papers 5_2003, University of Évora, Department of Economics (Portugal).
    19. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    20. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    21. Vasco J. Gabriel & Luis F. Martins, 2010. "The Cost Channel Reconsidered: A Comment Using an Identification‐Robust Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1703-1712, December.

    More about this item

    Keywords

    Fast bootstrap methods; Higher-order refinements; Generalized Empirical Likelihood; Confidence distributions; Mixing processes.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gnv:wpgsem:unige:129395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jean-Blaise Claivaz (email available below). General contact details of provider: https://edirc.repec.org/data/depgech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.