RiskLogitboost Regression for Rare Events in Binary Response: An Econometric Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zaremba, Adam & Czapkiewicz, Anna, 2017. "Digesting anomalies in emerging European markets: A comparison of factor pricing models," Emerging Markets Review, Elsevier, vol. 31(C), pages 1-15.
- Carpenter, Daniel P. & Lewis, David E., 2004. "Political Learning from Rare Events: Poisson Inference, Fiscal Constraints, and the Lifetime of Bureaus," Political Analysis, Cambridge University Press, vol. 12(3), pages 201-232, July.
- Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2021. "A Synthetic Penalized Logitboost to Model Mortgage Lending with Imbalanced Data," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 281-309, January.
- Simon C. K. Lee & Sheldon Lin, 2018. "Delta Boosting Machine with Application to General Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(3), pages 405-425, July.
- King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
- Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
- Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2019. "Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus Logistic Regression," Risks, MDPI, vol. 7(2), pages 1-16, June.
- Yufei Jin & Roderick Rejesus & Bertis Little, 2005. "Binary choice models for rare events data: a crop insurance fraud application," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 841-848.
- Cook, Scott J. & Hays, Jude C. & Franzese, Robert J., 2020. "Fixed effects in rare events data: a penalized maximum likelihood solution," Political Science Research and Methods, Cambridge University Press, vol. 8(1), pages 92-105, January.
- Bo, Lijun & Wang, Yongjin & Yang, Xuewei, 2010. "Markov-modulated jump-diffusions for currency option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 461-469, June.
- Maalouf, Maher & Trafalis, Theodore B., 2011. "Robust weighted kernel logistic regression in imbalanced and rare events data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 168-183, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Blackman, Allen & Guerrero, Santiago, 2012.
"What drives voluntary eco-certification in Mexico?,"
Journal of Comparative Economics, Elsevier, vol. 40(2), pages 256-268.
- Blackman, Allen & Guerrero, Santiago, 2010. "What Drives Voluntary Eco-Certification in Mexico?," RFF Working Paper Series dp-10-26, Resources for the Future.
- Roth, Paula, 2020. "Inequality, Relative Deprivation and Financial Distress: Evidence from Swedish Register Data," Working Paper Series 1374, Research Institute of Industrial Economics.
- Dustin C.S. Wagner & Kash Barker, 2014. "Statistical methods for modeling the risk of runway excursions," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 885-901, August.
- Kenchington, David G. & Shohfi, Thomas D. & Smith, Jared D. & White, Roger M., 2022. "Do sin tax hikes spur cheating in interpersonal exchange?," Accounting, Organizations and Society, Elsevier, vol. 96(C).
- Hani M. Samawi & Haresh Rochani & Daniel Linder & Arpita Chatterjee, 2017. "More efficient logistic analysis using moving extreme ranked set sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 753-766, March.
- Tang, Xinyin & Feng, Chong & Zhu, Jianping & He, Minna, 2022. "How Can We Learn from Borrowers’ Online Behaviors? The Signal Effect of Borrowers’ Platform Involvement on Their Credit Risk," SocArXiv qga8j, Center for Open Science.
- Denisa BANULESCU-RADU & Meryem YANKOL-SCHALCK, 2021. "Fraud detection in the era of Machine Learning: a household insurance case," LEO Working Papers / DR LEO 2904, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
- Kyungwon Suh, 2023. "Nuclear balance and the initiation of nuclear crises: Does superiority matter?," Journal of Peace Research, Peace Research Institute Oslo, vol. 60(2), pages 337-351, March.
- Tang, Xinyin & Feng, Chong & Zhu, Jianping & He, Minna, 2022. "How Can We Learn from Borrowers’ Online Behaviors? The Signal Effect of Borrowers’ Platform Involvement on Their Credit Risk," SocArXiv qga8j_v1, Center for Open Science.
- Neuberg Richard & Hannah Lauren, 2017. "Loan pricing under estimation risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 69-87, June.
- Trufin, Julien & Denuit, Michel, 2021. "Boosting cost-complexity pruned trees On Tweedie responses: the ABT machine," LIDAM Discussion Papers ISBA 2021015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2021. "A Synthetic Penalized Logitboost to Model Mortgage Lending with Imbalanced Data," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 281-309, January.
- Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
- F. Gauthier & D. Germain & B. Hétu, 2017. "Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 201-232, October.
- Douglas Cumming & Lars Hornuf & Moein Karami & Denis Schweizer, 2023.
"Disentangling Crowdfunding from Fraudfunding,"
Journal of Business Ethics, Springer, vol. 182(4), pages 1103-1128, February.
- Karami, Moein & Cumming, Douglas & Hornuf, Lars & Schweizer, Denis, 2017. "Disentangling Crowdfunding from Fraudfunding," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168120, Verein für Socialpolitik / German Economic Association.
- Eunae Yoo & Elliot Rabinovich & Bin Gu, 2020. "The Growth of Follower Networks on Social Media Platforms for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2696-2715, December.
- Lo Turco, Alessia & Maggioni, Daniela, 2018. "Effects of Islamic religiosity on bilateral trust in trade: The case of Turkish exports," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 947-965.
- Alessandra Iannamorelli & Stefano Nobili & Antonio Scalia & Luana Zaccaria, 2024.
"Asymmetric Information and Corporate Lending: Evidence from SME Bond Markets,"
Review of Finance, European Finance Association, vol. 28(1), pages 163-201.
- Alessandra Iannamorelli & Stefano Nobili & Antonio Scalia & Luana Zaccaria, 2020. "Asymmetric information in corporate lending: evidence from SME bond markets," Temi di discussione (Economic working papers) 1292, Bank of Italy, Economic Research and International Relations Area.
- Alessandra Iannamorelli & Stefano Nobili & Antonio Scalia & Luana Zaccaria, 2021. "Asymmetric Information and Corporate Lending: Evidence from SMEs Bond Markets," EIEF Working Papers Series 2105, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2021.
- Lian, Yu-Min & Chen, Jun-Home, 2021. "Pricing virtual currency-linked derivatives with time-inhomogeneity," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 424-439.
More about this item
Keywords
boosting; accuracy; interpretation; unbiased estimates;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:579-:d:513498. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.