IDEAS home Printed from https://ideas.repec.org/p/ags/uerstb/131556.html
   My bibliography  Save this paper

Nonresponse Bias Analysis of Body Mass Index Data in the Eating and Health Module

Author

Listed:
  • Hamrick, Karen S.

Abstract

The ERS Eating and Health Module, a supplement to the American Time Use Survey (ATUS), included questions on height and weight so that respondents’ Body Mass Index (BMI—a measure of body fat based on height and weight) could be calculated and analyzed with ATUS time-use data in obesity research. Some respondents did not report height and/or weight, and BMIs could not be calculated for them. Analyses focusing on correlations between BMIs and time use could be biased if respondents who did not report height and/or weight differ significantly in other observable characteristics from the rest of the survey respondents. However, findings reveal that any nonresponse bias associated with the height and weight data appears to be small and would not affect future analyses of BMIs and time-use pattern correlations.

Suggested Citation

  • Hamrick, Karen S., 2012. "Nonresponse Bias Analysis of Body Mass Index Data in the Eating and Health Module," Technical Bulletins 131556, United States Department of Agriculture, Economic Research Service.
  • Handle: RePEc:ags:uerstb:131556
    DOI: 10.22004/ag.econ.131556
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/131556/files/tb1934%20_3_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.131556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burkhauser, Richard V. & Cawley, John, 2008. "Beyond BMI: The value of more accurate measures of fatness and obesity in social science research," Journal of Health Economics, Elsevier, vol. 27(2), pages 519-529, March.
    2. Harley Frazis & Jay Stewart, 2012. "How to Think about Time-Use Data: What Inferences Can We Make about Long- and Short-Run Time Use from Time Diaries?," Annals of Economics and Statistics, GENES, issue 105-106, pages 231-245.
    3. Hamrick, Karen S. & Hopkins, David & McClelland, Ket, 2008. "How Much Time Do Americans Spend Eating?," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-2, June.
    4. Hamrick, Karen S. & Andrews, Margaret & Guthrie, Joanne & Hopkins, David & McClelland, Ket, 2011. "How Much Time Do Americans Spend on Food?," Economic Information Bulletin 291940, United States Department of Agriculture, Economic Research Service.
    5. Danubio, Maria Enrica & Miranda, Gaetano & Vinciguerra, Maria Giulia & Vecchi, Elvira & Rufo, Fabrizio, 2008. "Comparison of self-reported and measured height and weight: Implications for obesity research among young adults," Economics & Human Biology, Elsevier, vol. 6(1), pages 181-190, March.
    6. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    7. Kyureghian, Gayaneh & Capps, Oral, Jr. & Nayga, Rodolfo M., Jr., 2011. "General Remedies to Local Problems: An Applied Researcher’s Manual to Multiple Imputation," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 108266, Agricultural and Applied Economics Association.
    8. Harley Frazis & Jay Stewart, 2012. "How to Think about Time-Use Data: What Inferences Can We Make about Long- and Short-Run Time Use from Time Diaries?," Annals of Economics and Statistics, GENES, issue 105-106, pages 231-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamrick, Karen S. & McClelland, Ket, 2016. "Americans' Eating Patterns and Time Spent on Food: The 2014 Eating & Health Module Data," Economic Information Bulletin 262141, United States Department of Agriculture, Economic Research Service.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamrick, Karen S., 2012. "Nonresponse Bias Analysis of Body Mass Index in the Eating and Health Module," Technical Bulletins 184303, United States Department of Agriculture, Economic Research Service.
    2. Rebecca L. C. Taylor, 2020. "A Mixed Bag: The Hidden Time Costs of Regulating Consumer Behavior," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(2), pages 345-378.
    3. García Villar, Jaume & Quintana-Domeque, Climent, 2009. "Income and body mass index in Europe," Economics & Human Biology, Elsevier, vol. 7(1), pages 73-83, March.
    4. Courtemanche, Charles & Pinkston, Joshua C. & Stewart, Jay, 2021. "Time spent exercising and obesity: An application of Lewbel’s instrumental variables method," Economics & Human Biology, Elsevier, vol. 41(C).
    5. Wen, Ming & Maloney, Thomas N., 2014. "Neighborhood socioeconomic status and BMI differences by immigrant and legal status: Evidence from Utah," Economics & Human Biology, Elsevier, vol. 12(C), pages 120-131.
    6. Barone, Adriana & Barra, Cristian, 2019. "Weight status and mental health in Italy: Evidence from EHIS2 microdata," MPRA Paper 96703, University Library of Munich, Germany.
    7. Cawley, John & Maclean, Johanna Catherine & Hammer, Mette & Wintfeld, Neil, 2015. "Reporting error in weight and its implications for bias in economic models," Economics & Human Biology, Elsevier, vol. 19(C), pages 27-44.
    8. Barone, Adriana & O'Higgins, Niall, 2010. "Fat and out in Salerno and its province: Adolescent obesity and early school leaving in Southern Italy," Economics & Human Biology, Elsevier, vol. 8(1), pages 44-57, March.
    9. Mark C. Senia & Helen H. Jensen & Oleksandr Zhylyevskyy, 2017. "Time in eating and food preparation among single adults," Review of Economics of the Household, Springer, vol. 15(2), pages 399-432, June.
    10. Gil, Joan & Mora, Toni, 2011. "The determinants of misreporting weight and height: The role of social norms," Economics & Human Biology, Elsevier, vol. 9(1), pages 78-91, January.
    11. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    12. Md. Alauddin Majumder, 2013. "Does Obesity Matter for Wages? Evidence from the United States," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 200-217, June.
    13. Maximilian D. Schmeiser, 2012. "The impact of long‐term participation in the supplemental nutrition assistance program on child obesity," Health Economics, John Wiley & Sons, Ltd., vol. 21(4), pages 386-404, April.
    14. Jay Stewart, 2014. "Early to bed and earlier to rise: school, maternal employment, and children’s sleep," Review of Economics of the Household, Springer, vol. 12(1), pages 29-50, March.
    15. Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
    16. Laura Jeanet Martínez Rodríguez, 2017. "Impacto de la ola invernal sobre las dinámicas de uso del tiempo de hogares rurales," Documentos CEDE 15603, Universidad de los Andes, Facultad de Economía, CEDE.
    17. von Hinke Kessler Scholder S, 2009. "Genetic Markers as Instrumental Variables: An Application to Child Fat Mass and Academic Achievement," Health, Econometrics and Data Group (HEDG) Working Papers 09/25, HEDG, c/o Department of Economics, University of York.
    18. Peng Nie & Andrew E. Clarck & Conchita D'Ambrosio & Lanlin Ding, 2020. "Income-related health inequality in urban China (1991-2015): The role of homeownership and housing conditions," Working Papers 524, ECINEQ, Society for the Study of Economic Inequality.
    19. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    20. Donal O'Neill & Olive Sweetman, 2013. "Estimating Obesity Rates in Europe in the Presence of Self-Reporting Errors," Economics Department Working Paper Series n236-13.pdf, Department of Economics, National University of Ireland - Maynooth.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uerstb:131556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ersgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.