IDEAS home Printed from https://ideas.repec.org/p/ags/icar24/344978.html
   My bibliography  Save this paper

Impact of Climate Change on Agriculture in India: Assessment for Agro-Climatic Zones

Author

Listed:
  • Singh, Naveen P.
  • Anand, Bhawna
  • Singh, Surendra

Abstract

This policy paper offers an insight into the potential impact of climate change on major kharif and rabi crop yields in different agro-climatic zones. It also provides useful inputs to formulate viable adaptation and mitigation strategies and policy options to combat the discernible effects of climate change on Indian agriculture. Constructive comments from the readers shall be useful to improve the research work in this area.

Suggested Citation

  • Singh, Naveen P. & Anand, Bhawna & Singh, Surendra, 2020. "Impact of Climate Change on Agriculture in India: Assessment for Agro-Climatic Zones," Policy Papers 344978, ICAR National Institute of Agricultural Economics and Policy Research (NIAP).
  • Handle: RePEc:ags:icar24:344978
    DOI: 10.22004/ag.econ.344978
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/344978/files/Impact%20of%20Climate%20Change%20on%20Agriculture%20in%20India-%20Assessment%20for%20Agro-Climatic%20Zones.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.344978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Birthal, P.S. & Negi, Digvijay S. & Kumar, Shiv & Aggarwal, Shaily & Suresh, A. & Khan, Md. Tajuddin, 2014. "How Sensitive is Indian Agriculture to Climate Change?," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 69(4), pages 1-14.
    2. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    3. Jayaraman, T. & Murari, Kamal, 2014. "Climate Change and Agriculture: Current and Future Trends, and Implications for India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 4(1), July.
    4. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    5. Dinar, A. & Mendelsohn, R. & Evenson, R. & Parikh, J. & Sanghi, A. & Kumar, K. & McKinsey, J. & Lonergen, S., 1998. "Measuring the Impact of CLimate Change on Indian Agriculture," Papers 402, World Bank - Technical Papers.
    6. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    7. Naresh Soora & P. Aggarwal & Rani Saxena & Swaroopa Rani & Surabhi Jain & Nitin Chauhan, 2013. "An assessment of regional vulnerability of rice to climate change in India," Climatic Change, Springer, vol. 118(3), pages 683-699, June.
    8. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    9. Shreekant Gupta & Partha Sen & Suchita Srinivasan, 2014. "Impact Of Climate Change On The Indian Economy: Evidence From Food Grain Yields," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-29.
    10. William R. Cline, 2007. "Global Warming and Agriculture: Impact Estimates by Country," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 4037, April.
    11. Burke, Marshall & Hsiang, Solomon M & Miguel, Edward, 2015. "Global non-linear effect of temperature on economic production," Department of Economics, Working Paper Series qt3g72r0zv, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    12. David M. Drukker, 2003. "Testing for serial correlation in linear panel-data models," Stata Journal, StataCorp LP, vol. 3(2), pages 168-177, June.
    13. Mathew Koll Roxy & Kapoor Ritika & Pascal Terray & Raghu Murtugudde & Karumuri Ashok & B. N. Goswami, 2015. "Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    14. Kala, Namrata & Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2012. "The impact of climate change on agro-ecological zones: evidence from Africa," Environment and Development Economics, Cambridge University Press, vol. 17(6), pages 663-687, December.
    15. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    16. M. Falkenmark & J. Rockström & L. Karlberg, 2009. "Present and future water requirements for feeding humanity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 59-69, February.
    17. R. Kripalani & Ashwini Kulkarni & S. Sabade & M. Khandekar, 2003. "Indian Monsoon Variability in a Global Warming Scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(2), pages 189-206, June.
    18. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    2. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    4. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    5. Kaixing Huang & Qianqian Hong, 2024. "The impact of global warming on obesity," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(3), pages 1-32, September.
    6. Howard, Peter & Sterner, Thomas, 2014. "Raising the Temperature on Food Prices: Climate Change, Food Security, and the Social Cost of Carbon," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170648, Agricultural and Applied Economics Association.
    7. K.S. Kavi Kumar, 2009. "Climate Sensitivity of Indian Agriculture," Working Papers 2009-043, Madras School of Economics,Chennai,India.
    8. Raju Mandal & Hiranya Nath, 2017. "Climate Change and indian Agriculture: Impacts on Crop Yield," Working Papers 1705, Sam Houston State University, Department of Economics and International Business.
    9. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    10. Babakholov, Sherzod & Bobojonov, Ihtiyor & Hasanov, Shavkat & Glauben, Thomas, 2022. "An empirical assessment of the interactive impacts of irrigation and climate on farm productivity in Samarkand region, Uzbekistan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7.
    11. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    12. Rigas, Nikos & Kounetas, Konstantinos, 2021. "The Role of temperature, Precipitation and CO2 emissions on Countries’ Economic Growth and Productivity," MPRA Paper 104727, University Library of Munich, Germany.
    13. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    14. Gupta, Shreekant & Sen, Partha & Verma, Saumya, 2016. "Impact of Climate Change on Foodgrain Yields in India," CEI Working Paper Series 2015-9, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    15. Seo, Niggol & Mendelsohn, Robert, 2007. "A Ricardian analysis of the impact of climate change on Latin American farms," Policy Research Working Paper Series 4163, The World Bank.
    16. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    17. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    18. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    19. Cattaneo, Cristina & Peri, Giovanni, 2016. "The migration response to increasing temperatures," Journal of Development Economics, Elsevier, vol. 122(C), pages 127-146.
    20. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.

    More about this item

    Keywords

    Climate Change;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:icar24:344978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dapurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.