IDEAS home Printed from https://ideas.repec.org/p/ags/aaea20/304585.html
   My bibliography  Save this paper

A forest model inter-comparison project (For-MIP) to assess the future of forests under climate, policy and technological stressors

Author

Listed:
  • Daigneault, Adam J.
  • Baker, Justin S.
  • Favero, Alice

Abstract

No abstract is available for this item.

Suggested Citation

  • Daigneault, Adam J. & Baker, Justin S. & Favero, Alice, 2020. "A forest model inter-comparison project (For-MIP) to assess the future of forests under climate, policy and technological stressors," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304585, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea20:304585
    DOI: 10.22004/ag.econ.304585
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/304585/files/19232.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.304585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daigneault, Adam, 2019. "A Shared Socio-economic Pathway Approach to Assessing the Future of the New Zealand Forest Sector," Journal of Forest Economics, now publishers, vol. 34(3-4), pages 233-262, November.
    2. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    3. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2018. "Can the Global Forest Sector Survive 11 °C Warming?," Agricultural and Resource Economics Review, Cambridge University Press, vol. 47(2), pages 388-413, August.
    4. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    5. Xiaohui Tian & Brent Sohngen & Justin Baker & Sara Ohrel & Allen A. Fawcett, 2018. "Will U.S. Forests Continue to Be a Carbon Sink?," Land Economics, University of Wisconsin Press, vol. 94(1), pages 97-113.
    6. Jones, Jason P. H. & Baker, Justin S. & Austin, Kemen & Latta, Greg & Sohngen, Brent & Wade, Chrisopher M. & Cai, Yongxia & Aramayo-Lipa, Lindsay & Beach, Robert & Ohrel, Sara B. & Ragnauth, Shaun & C, 2019. "Importance of Cross-Sector Interactions When Projecting Forest Carbon across Alternative Socioeconomic Futures," Journal of Forest Economics, now publishers, vol. 34(3-4), pages 205-231, November.
    7. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    8. Giacomo Grassi & Jo House & Frank Dentener & Sandro Federici & Michel den Elzen & Jim Penman, 2017. "The key role of forests in meeting climate targets requires science for credible mitigation," Nature Climate Change, Nature, vol. 7(3), pages 220-226, March.
    9. Lauri, Pekka & Forsell, Nicklas & Korosuo, Anu & Havlík, Petr & Obersteiner, Michael & Nordin, Annika, 2017. "Impact of the 2°C target on global woody biomass use," Forest Policy and Economics, Elsevier, vol. 83(C), pages 121-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daigneault, Adam & Favero, Alice, 2021. "Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 103(C).
    2. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    3. Ben Henderson & Stefan Frank & Petr Havlik & Hugo Valin, 2021. "Policy strategies and challenges for climate change mitigation in the Agriculture, Forestry and Other Land Use (AFOLU) sector," OECD Food, Agriculture and Fisheries Papers 149, OECD Publishing.
    4. Antonina Ivanova & Asim Zia & Paiman Ahmad & Mairon Bastos-Lima, 2020. "Climate mitigation policies and actions: access and allocation issues," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 287-301, June.
    5. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    6. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    7. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    8. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    9. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    10. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    11. Giovanni Litt & Mattia Bertin & Vittore Negretto & Francesco Musco, 2022. "Reinterpreting Spatial Planning Cultures to Define Local Adaptation Cultures: A Methodology from the Central Veneto Region Case," Sustainability, MDPI, vol. 14(12), pages 1-31, June.
    12. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Dudu, Hasan & Ferrari, Emanuele & Mainar, Alfredo & Sartori, Martina, 2018. "Economy-wide impact of changing water availability in Senegal: an application of the JRC.DEMETRA CGE model," Conference papers 332934, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Koch, Johannes & Leimbach, Marian, 2023. "SSP economic growth projections: Major changes of key drivers in integrated assessment modelling," Ecological Economics, Elsevier, vol. 206(C).
    15. Yongyang Cai, 2020. "The Role of Uncertainty in Controlling Climate Change," Papers 2003.01615, arXiv.org, revised Oct 2020.
    16. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
    17. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    18. Nigel W. Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    19. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    20. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.

    More about this item

    Keywords

    Resource/Energy Economics and Policy; Demand and Price Analysis;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea20:304585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.