IDEAS home Printed from https://ideas.repec.org/p/ags/nccewp/340059.html
   My bibliography  Save this paper

How the Future of the Global Forest Sink Depends on Timber Demand, Forest Management, and Carbon Prices

Author

Listed:
  • Daigneault, Adam
  • Baker, Justin S.
  • Guo, Jinggang
  • Lauri, Pekka
  • Favero, Alice
  • Forsell, Nicklas
  • Johnston, Craig
  • Ohrel, Sara
  • Sohngen, Brent

Abstract

Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study assesses future forest carbon calculated by global forestry models that manage forests to provide wood products and carbon. The results indicate forests will remain a carbon sink in the future, sequestering 1.2-5.8 GtCO2e/yr under a wide range of drivers and conditions, including increased demand for wood products, agricultural land, and carbon. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area.

Suggested Citation

  • Daigneault, Adam & Baker, Justin S. & Guo, Jinggang & Lauri, Pekka & Favero, Alice & Forsell, Nicklas & Johnston, Craig & Ohrel, Sara & Sohngen, Brent, 2021. "How the Future of the Global Forest Sink Depends on Timber Demand, Forest Management, and Carbon Prices," CEnREP Working Papers 340059, North Carolina State University, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:nccewp:340059
    DOI: 10.22004/ag.econ.340059
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/340059/files/Daigneault.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.340059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daigneault, Adam, 2019. "A Shared Socio-economic Pathway Approach to Assessing the Future of the New Zealand Forest Sector," Journal of Forest Economics, now publishers, vol. 34(3-4), pages 233-262, November.
    2. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    3. Morland, Christian & Schier, Franziska & Janzen, Niels & Weimar, Holger, 2018. "Supply and demand functions for global wood markets: Specification and plausibility testing of econometric models within the global forest sector," Forest Policy and Economics, Elsevier, vol. 92(C), pages 92-105.
    4. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2018. "Can the Global Forest Sector Survive 11 °C Warming?," Agricultural and Resource Economics Review, Cambridge University Press, vol. 47(2), pages 388-413, August.
    5. Lauri, Pekka & Forsell, Nicklas & Gusti, Mykola & Havlík, Petr & Obersteiner, Michael, 2019. "Global Woody Biomass Harvest Volumes and Forest Area Use Under Different SSP-RCP Scenarios," Journal of Forest Economics, now publishers, vol. 34(3-4), pages 285-309, November.
    6. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    7. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
    8. Giacomo Grassi & Jo House & Frank Dentener & Sandro Federici & Michel den Elzen & Jim Penman, 2017. "The key role of forests in meeting climate targets requires science for credible mitigation," Nature Climate Change, Nature, vol. 7(3), pages 220-226, March.
    9. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    10. Kim, Sei Jin & Baker, Justin S. & Sohngen, Brent L. & Shell, Michael, 2018. "Cumulative global forest carbon implications of regional bioenergy expansion policies," Resource and Energy Economics, Elsevier, vol. 53(C), pages 198-219.
    11. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    12. Gaulier, Guillaume & Zignago, Soledad, 2004. "Notes on BACI (analytical database of international trade). 1989-2002 version," MPRA Paper 32401, University Library of Munich, Germany.
    13. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    14. Ian W. Hardie & Peter J. Parks, 1997. "Land Use with Heterogeneous Land Quality: An Application of an Area Base Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 299-310.
    15. Gert-Jan Nabuurs & Marcus Lindner & Pieter J. Verkerk & Katja Gunia & Paola Deda & Roman Michalak & Giacomo Grassi, 2013. "First signs of carbon sink saturation in European forest biomass," Nature Climate Change, Nature, vol. 3(9), pages 792-796, September.
    16. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daigneault, Adam & Favero, Alice, 2021. "Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 103(C).
    2. Daigneault, Adam J., 2018. "Global forest management and carbon sequestration futures under alternative shared socioeconomic pathways," 2018 Annual Meeting, August 5-7, Washington, D.C. 274308, Agricultural and Applied Economics Association.
    3. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    4. Daigneault, Adam J. & Baker, Justin S. & Favero, Alice, 2020. "A forest model inter-comparison project (For-MIP) to assess the future of forests under climate, policy and technological stressors," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304585, Agricultural and Applied Economics Association.
    5. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    6. Christophe Gouel & Houssein Guimbard, 2018. "Nutrition Transition and the Structure of Global Food Demand," Post-Print hal-01820555, HAL.
    7. Christophe Gouel & Houssein Guimbard, 2019. "Nutrition Transition and the Structure of Global Food Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 383-403.
    8. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    9. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    10. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    11. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    12. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    13. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    14. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    15. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    17. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    18. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    19. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    20. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nccewp:340059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dancsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.