IDEAS home Printed from https://ideas.repec.org/p/aah/create/2021-07.html
   My bibliography  Save this paper

Is U.S. real output growth really non-normal? Testing distributional assumptions in time-varying location-scale models

Author

Listed:
  • Matei Demetrescu

    (University of Kiel)

  • Robinson Kruse-Becher

    (University of Hagen and CREATES)

Abstract

Testing distributional assumptions is an evergreen topic in statistics, econometrics and other quantitative disciplines. A key assumption for extant distributional tests is some form of stationarity. Yet, under time-varying mean or time-varying volatility, the observed marginal distribution belongs to a mixture family with components having the same baseline distribution but different location and scale parameters. Therefore, distribution tests consistently reject when stationarity assumptions are violated, even if the baseline distribution is correctly specified. At the same time, time-varying means or variances are common in economic data. We therefore propose distribution tests that are robustified to such time-variability of the data by means of a local standardization procedure. As a leading case in applied work, we demonstrate our approach in detail for the case of testing normality, while our main results are extended to general location-scale models without essential modifications. In addition to time-varying mean and volatility functions, the data generating process may exhibit features such as generic serial dependence. Specifically, we base our tests on raw moments of probability integral transformations of the series standardized using rolling windows of data, of suitably chosen width. The use of probability integral transforms is advantageous as they accommodate a wide range of distributions to be tested for and imply simple raw moment restrictions. Flexible nonparametric estimators of the mean and the variance functions are employed for the local standardization. Short-run dynamics are taken into account using the (fixed-b) Heteroskedasticity and Autocorrelation Robust [HAR] approach of Kiefer and Vogelsang (2005, Econometric Theory), which leads to robustness of the proposed test statistics to the estimation error induced by the local standardization. To ease implementation, we propose a simple rule for choosing the tuning parameters of the standardization procedure, as well as an effective finite-sample adjustment. The provided Monte Carlo experiments show that the new tests perform well in terms of size and power and outperform alternative tests even under stationarity. Finally, we find in contrast to other studies no evidence against normality of the aggregate U.S. real output growth rates after accounting for time-variation in mean and variance.

Suggested Citation

  • Matei Demetrescu & Robinson Kruse-Becher, 2021. "Is U.S. real output growth really non-normal? Testing distributional assumptions in time-varying location-scale models," CREATES Research Papers 2021-07, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2021-07
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/21/rp21_07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    2. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    3. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    4. Lütkepohl, Helmut & Meitz, Mika & Netšunajev, Aleksei & Saikkonen, Pentti, 2021. "Testing identification via heteroskedasticity in structural vector autoregressive models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 24(1), pages 1-22.
    5. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    7. Paul De Grauwe, 2014. "Booms and Busts in Economic Activity: A Behavioral Explanation," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 19, pages 521-556, World Scientific Publishing Co. Pte. Ltd..
    8. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    9. Jingjing Yang & Timothy J. Vogelsang, 2011. "Fixed‐b analysis of LM‐type tests for a shift in mean," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 438-456, October.
    10. Marianne Sensier & Dick van Dijk, 2004. "Testing for Volatility Changes in U.S. Macroeconomic Time Series," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
    11. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    12. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    13. Ascari, Guido & Fagiolo, Giorgio & Roventini, Andrea, 2015. "Fat-Tail Distributions And Business-Cycle Models," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 465-476, March.
    14. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    15. Daniel J. Vine & Valerie A. Ramey, 2006. "Declining Volatility in the U.S. Automobile Industry," American Economic Review, American Economic Association, vol. 96(5), pages 1876-1889, December.
    16. Gabriel Perez-Quiros & Margaret M. McConnell, 2000. "Output Fluctuations in the United States: What Has Changed since the Early 1980's?," American Economic Review, American Economic Association, vol. 90(5), pages 1464-1476, December.
    17. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    18. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2017. "Microeconomic Origins of Macroeconomic Tail Risks," American Economic Review, American Economic Association, vol. 107(1), pages 54-108, January.
    19. Aruoba, S. Borağan & Diebold, Francis X. & Nalewaik, Jeremy & Schorfheide, Frank & Song, Dongho, 2016. "Improving GDP measurement: A measurement-error perspective," Journal of Econometrics, Elsevier, vol. 191(2), pages 384-397.
    20. Deng, Ai & Perron, Pierre, 2008. "The Limit Distribution Of The Cusum Of Squares Test Under General Mixing Conditions," Econometric Theory, Cambridge University Press, vol. 24(3), pages 809-822, June.
    21. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    22. Malte Knüppel, 2015. "Evaluating the Calibration of Multi-Step-Ahead Density Forecasts Using Raw Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 270-281, April.
    23. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    24. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    25. Martín Almuzara & Dante Amengual & Enrique Sentana, 2019. "Normality tests for latent variables," Quantitative Economics, Econometric Society, vol. 10(3), pages 981-1017, July.
    26. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    27. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    28. Yong Bao, 2013. "On Sample Skewness and Kurtosis," Econometric Reviews, Taylor & Francis Journals, vol. 32(4), pages 415-448, December.
    29. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    30. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    31. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    32. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    33. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    34. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    35. Kiss, Tamás & Österholm, Pär, 2020. "Fat tails in leading indicators," Economics Letters, Elsevier, vol. 193(C).
    36. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    37. Yixiao Sun, 2014. "Fixed‐Smoothing Asymptotics in a Two‐Step Generalized Method of Moments Framework," Econometrica, Econometric Society, vol. 82, pages 2327-2370, November.
    38. Luo, Sui & Startz, Richard, 2014. "Is it one break or ongoing permanent shocks that explains U.S. real GDP?," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 155-163.
    39. Z. Lomnicki, 1961. "Tests for departure from normality in the case of linear stochastic processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 4(1), pages 37-62, December.
    40. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    41. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    42. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
    43. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    44. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    45. María Dolores Gadea & Ana Gómez‐Loscos & Gabriel Pérez‐Quirós, 2018. "Great Moderation And Great Recession: From Plain Sailing To Stormy Seas?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(4), pages 2297-2321, November.
    46. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    47. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
    48. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    49. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    50. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    51. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    52. Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
    53. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
    54. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demetrescu, Matei & Kruse, Robinson, 2015. "Testing heteroskedastic time series for normality," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113221, Verein für Socialpolitik / German Economic Association.
    2. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    3. Hanck, Christoph & Demetrescu, Matei & Kruse, Robinson, 2015. "Fixed-b Asymptotics for t-Statistics in the Presence of Time-Varying Volatility," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112916, Verein für Socialpolitik / German Economic Association.
    4. Pierre Perron & Yohei Yamamoto, 2022. "The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence," Empirical Economics, Springer, vol. 62(3), pages 1193-1218, March.
    5. Netsunajev, Aleksei, 2013. "Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 51-62.
    6. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    7. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    8. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    9. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with smooth transition in variances," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 43-57.
    10. repec:hum:wpaper:sfb649dp2014-031 is not listed on IDEAS
    11. Grote, Claudia & Bertram, Philip, 2015. "A comparative Study of Volatility Breaks," Hannover Economic Papers (HEP) dp-558, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. Lütkepohl, Helmut & Netésunajev, Aleksei, 2014. "Structural vector autoregressions with smooth transition in variances: The interaction between US monetary policy and the stock market," SFB 649 Discussion Papers 2014-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Helmut Herwartz & Alexander Lange & Simone Maxand, 2022. "Data‐driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships?," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 668-693, April.
    14. Helmut Herwartz & Martin Plödt, 2016. "Simulation Evidence on Theory-based and Statistical Identification under Volatility Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 94-112, February.
    15. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    16. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    17. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
    18. Emanuele Bacchiocchi & Efrem Castelnuovo & Luca Fanelli, 2014. "Gimme a break! Identification and estimation of the macroeconomic effects of monetary policy shocks in the U.S," "Marco Fanno" Working Papers 0181, Dipartimento di Scienze Economiche "Marco Fanno".
    19. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    20. Fritsche, Jan Philipp & Klein, Mathias & Rieth, Malte, 2021. "Government spending multipliers in (un)certain times," Journal of Public Economics, Elsevier, vol. 203(C).
    21. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.

    More about this item

    Keywords

    Distribution testing; Probability integral transformation; Local standardization; Nonparametric estimation; Heteroskedasticity and autocorrelation robust inference;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2021-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.