IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1111r.html
   My bibliography  Save this paper

A Conditional Kolmogorov Test

Author

Abstract

This paper introduces a conditional Kolmogorov test of model specification for parametric models with covariates (regressors). The test is an extension of the Kolmogorov test of goodness-of-fit for distribution functions. The test is shown to have power against 1/{root n}-local alternatives and all fixed alternatives to the null hypothesis. A parametric bootstrap procedure is used to obtain critical values for the test.

Suggested Citation

  • Donald W.K. Andrews, 1996. "A Conditional Kolmogorov Test," Cowles Foundation Discussion Papers 1111R, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1111r
    Note: CFP 949.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d11/d1111-r.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhyun Lee, 2013. "A Consistent Nonparametric Bootstrap Test of Exogeneity," Discussion Paper Series, School of Economics and Finance 201316, School of Economics and Finance, University of St Andrews.
    2. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    3. Silva João M. C. Santos & Tenreyro Silvana & Windmeijer Frank, 2015. "Testing Competing Models for Non-negative Data with Many Zeros," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 29-46, January.
    4. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    5. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    6. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    7. Kuan Chung-Ming & Lee Wei-Ming, 2004. "A New Test of the Martingale Difference Hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-26, December.
    8. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    9. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    10. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    11. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    12. Domowitz, Ian & El-Gamal, Mahmoud A., 2001. "A consistent nonparametric test of ergodicity for time series with applications," Journal of Econometrics, Elsevier, vol. 102(2), pages 365-398, June.
    13. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    14. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    15. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers 68/15, Institute for Fiscal Studies.
    16. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    17. White, Halbert & Hong, Yongmiao, 1999. "M-Testing Using Finite and Infinite Dimensional Parameter Estimators," University of California at San Diego, Economics Working Paper Series qt9qz123ng, Department of Economics, UC San Diego.
    18. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    19. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    20. Manuel A. Dominguez & Ignacio N. Lobato, 2001. "A Consistent Test for the Martingale Difference Hypothesis," Working Papers 0101, Centro de Investigacion Economica, ITAM.
    21. Rob Euwals & Bertrand Melenberg & Arthur van Soest, 1998. "Testing the predictive value of subjective labour supply data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 567-585.

    More about this item

    Keywords

    Bootstrap; consistent test; parametric model; specification test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1111r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.