IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v36y2013icp51-62.html
   My bibliography  Save this article

Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity

Author

Listed:
  • Netsunajev, Aleksei

Abstract

The paper reconsiders the conflicting results in the debate connected to the effects of technology shocks on hours worked. Given the major dissatisfaction with the just-identifying long-run restrictions, I analyze whether the restrictions used in the literature are consistent with the data. Modeling volatility of shocks using Markov switching structure allows to obtain additional identifying information and perform tests of the restrictions that were just-identifying in classical structural vector autoregressive analysis. Using six ways of identifying technology shocks, I find that not all of them are supported by the data. There is no clear-cut evidence in favor of a positive reaction of hours to technology shocks.

Suggested Citation

  • Netsunajev, Aleksei, 2013. "Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 51-62.
  • Handle: RePEc:eee:jmacro:v:36:y:2013:i:c:p:51-62
    DOI: 10.1016/j.jmacro.2012.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164070413000062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmacro.2012.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gali, Jordi & Lopez-Salido, J. David & Valles, Javier, 2003. "Technology shocks and monetary policy: assessing the Fed's performance," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 723-743, May.
    2. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    3. repec:diw:diwwpp:dp1235 is not listed on IDEAS
    4. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, June.
    5. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    6. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    7. Hubert Gabrisch & Karsten Staehr, 2015. "The Euro Plus Pact: Competitiveness and External Capital Flows in the EU Countries," Journal of Common Market Studies, Wiley Blackwell, vol. 53(3), pages 558-576, May.
    8. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    9. Yongsung Chang & Jay H. Hong, 2006. "Do Technological Improvements in the Manufacturing Sector Raise or Lower Employment?," American Economic Review, American Economic Association, vol. 96(1), pages 352-368, March.
    10. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    11. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    12. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    13. Jaanika Meriküll, 2015. "Household Borrowing During a Creditless Recovery," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(5), pages 1051-1068, September.
    14. Roberto Rigobon & Brian Sack, 2003. "Measuring The Reaction of Monetary Policy to the Stock Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 639-669.
    15. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    16. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    17. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    18. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology-Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    19. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    20. Jonas D. M. Fisher, 2002. "Technology shocks matter," Working Paper Series WP-02-14, Federal Reserve Bank of Chicago.
    21. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    22. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    23. C. Baumeister & G. Peersman & -, 2010. "Sources of the Volatility Puzzle in the Crude Oil Market," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/634, Ghent University, Faculty of Economics and Business Administration.
    24. Helmut Lütkepohl, 2013. "Reducing confidence bands for simulated impulse responses," Statistical Papers, Springer, vol. 54(4), pages 1131-1145, November.
    25. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    26. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    27. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov‐Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
    28. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    29. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    30. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    31. Merike Kukk & Dmitry Kulikov & Karsten Staehr, 2012. "Consumption sensitivities in Estonia: income shocks of different persistence," Bank of Estonia Working Papers wp2012-3, Bank of Estonia, revised 01 Mar 2012.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
    2. Ivan Mendieta-Munoz & Mengheng Li, 2019. "The Multivariate Simultaneous Unobserved Compenents Model and Identification via Heteroskedasticity," Working Paper Series, Department of Economics, University of Utah 2019_06, University of Utah, Department of Economics.
    3. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
    4. Lütkepohl, Helmut & Woźniak, Tomasz, 2020. "Bayesian inference for structural vector autoregressions identified by Markov-switching heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    5. Helmut Lütkepohl & Anton Velinov, 2016. "Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions Via Heteroskedasticity," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 377-392, April.
    6. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with smooth transition in variances," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 43-57.
    7. Juan Carlos Cuestas & Bo Tang, 2015. "Exchange Rate Changes and Stock Returns in China: A Markov Switching SVAR Approach," Working Papers 2015024, The University of Sheffield, Department of Economics.
    8. Marianna Oliskevych & Iryna Lukianenko, 2020. "European unemployment nonlinear dynamics over the business cycles: Markov switching approach," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 22(4), pages 375-401.
    9. Dmitry Kulikov & Aleksei Netsunajev, 2016. "Identifying Shocks in Structural VAR models via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2015-8, Bank of Estonia, revised 19 Feb 2016.
    10. Noel Gaston & Gulasekaran Rajaguru, 2015. "A Markov-switching structural vector autoregressive model of boom and bust in the Australian labour market," Empirical Economics, Springer, vol. 49(4), pages 1271-1299, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmut Lütkepohl & Anton Velinov, 2016. "Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions Via Heteroskedasticity," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 377-392, April.
    2. repec:diw:diwwpp:dp1388 is not listed on IDEAS
    3. Helmut Lütkepohl & Aleksei Netsunajev, 2014. "Structural Vector Autoregressions with Smooth Transition in Variances: The Interaction between U.S. Monetary Policy and the Stock Market," Discussion Papers of DIW Berlin 1388, DIW Berlin, German Institute for Economic Research.
    4. Luca Gambetti & Jordi Galí, 2009. "On the Sources of the Great Moderation," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 26-57, January.
    5. Emanuele Bacchiocchi & Efrem Castelnuovo & Luca Fanelli, 2014. "Gimme a break! Identification and estimation of the macroeconomic effects of monetary policy shocks in the U.S," "Marco Fanno" Working Papers 0181, Dipartimento di Scienze Economiche "Marco Fanno".
    6. repec:hum:wpaper:sfb649dp2014-031 is not listed on IDEAS
    7. Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
    8. Cantore, C. & Ferroni, F. & León-Ledesma, M A., 2011. "Interpreting the Hours-Technology time-varying relationship," Working papers 351, Banque de France.
    9. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with smooth transition in variances," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 43-57.
    10. Nucci, Francesco & Riggi, Marianna, 2013. "Performance pay and changes in U.S. labor market dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2796-2813.
    11. Mumtaz, Haroon & Zanetti, Francesco, 2012. "Neutral technology shocks and employment dynamics: results based on an RBC identification scheme," Bank of England working papers 453, Bank of England.
    12. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    13. repec:diw:diwwpp:dp1259 is not listed on IDEAS
    14. repec:hum:wpaper:sfb649dp2014-009 is not listed on IDEAS
    15. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    16. Dmitry Kulikov & Aleksei Netsunajev, 2016. "Identifying Shocks in Structural VAR models via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2015-8, Bank of Estonia, revised 19 Feb 2016.
    17. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
    18. Matei Demetrescu & Robinson Kruse-Becher, 2021. "Is U.S. real output growth really non-normal? Testing distributional assumptions in time-varying location-scale models," CREATES Research Papers 2021-07, Department of Economics and Business Economics, Aarhus University.
    19. Hofmann, Boris & Peersman, Gert & Straub, Roland, 2012. "Time variation in U.S. wage dynamics," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 769-783.
    20. repec:diw:diwwpp:dp1464 is not listed on IDEAS
    21. Pierre Perron & Yohei Yamamoto, 2022. "The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence," Empirical Economics, Springer, vol. 62(3), pages 1193-1218, March.
    22. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    23. Helmut Lütkepohl & Aleksei Netsunajev, 2015. "Structural Vector Autoregressions with Heteroskedasticity: A Comparison of Different Volatility Models," Discussion Papers of DIW Berlin 1464, DIW Berlin, German Institute for Economic Research.
    24. Rujin, Svetlana, 2024. "Labor market institutions and technology-induced labor adjustment along the extensive and intensive margins," Journal of Macroeconomics, Elsevier, vol. 79(C).
    25. repec:diw:diwwpp:dp1235 is not listed on IDEAS
    26. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.

    More about this item

    Keywords

    Technology shocks; Markov switching model; Heteroskedasticity;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:36:y:2013:i:c:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.