IDEAS home Printed from https://ideas.repec.org/h/zbw/hiclch/249660.html
   My bibliography  Save this book chapter

Gantry crane scheduling and storage techniques in rail-road terminals

In: Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 32

Author

Listed:
  • Kaidabettu, Chiraag Dinesh
  • Lange, Ann-Kathrin
  • Jahn, Carlos

Abstract

Purpose: A rising global container throughput has necessitated the need for more efficient terminals. This work focuses on identifying past developments, important methods, key performance indicators and the future trends, related to the main decision tasks in an inland rail-road terminal. Prime focus is upon day-to-day operations performed on container entry through trains and trucks. Methodology: A comprehensive systematic literature survey is carried out and a classification scheme developed, which is applied to the considered publications. Various techniques used to formulate the model and common solution approaches are identified for the key decision problems. Limitations in the current literature recognized and potential future research directions suggested. Findings: Crane scheduling and storage space allocation are the most concentrated-upon problems. Simulation platforms have been largely used to model the problems and heuristics is the most common approach to solve other models. Time taken and costs involved are sought to be minimized. Originality: In literature, marine container terminals have received greater attention as compared to inland terminals. Due to differing operation procedures, relevant research results from marine cannot be applied directly to railway terminals. Moreover, some of the existing works related to inland were found to disregard certain practical issues rendering them inapplicable for real applications.

Suggested Citation

  • Kaidabettu, Chiraag Dinesh & Lange, Ann-Kathrin & Jahn, Carlos, 2021. "Gantry crane scheduling and storage techniques in rail-road terminals," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 457-492, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  • Handle: RePEc:zbw:hiclch:249660
    DOI: 10.15480/882.4004
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/249660/1/hicl-2021-32-457.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15480/882.4004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lai, Yung-Cheng & Barkan, Christopher P.L. & Önal, Hayri, 2008. "Optimizing the aerodynamic efficiency of intermodal freight trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 820-834, September.
    2. Alena Otto & Xiyu Li & Erwin Pesch, 2017. "Two-Way Bounded Dynamic Programming Approach for Operations Planning in Transshipment Yards," Transportation Science, INFORMS, vol. 51(1), pages 325-342, February.
    3. Peng Guo & Wenming Cheng & Yi Wang & Nils Boysen, 2018. "Gantry crane scheduling in intermodal rail-road container terminals," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5419-5436, August.
    4. Yung-Cheng Lai & Yanfeng Ouyang & Christopher P. L. Barkan, 2008. "A Rolling Horizon Model to Optimize Aerodynamic Efficiency of Intermodal Freight Trains with Uncertainty," Transportation Science, INFORMS, vol. 42(4), pages 466-477, November.
    5. Rizzoli, Andrea E. & Fornara, Nicoletta & Gambardella, Luca Maria, 2002. "A simulation tool for combined rail/road transport in intermodal terminals," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 57-71.
    6. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    7. Nils Boysen & Joachim Scholl & Konrad Stephan, 2017. "When road trains supply freight trains: scheduling the container loading process by gantry crane between multi-trailer trucks and freight trains," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 137-164, January.
    8. Li Wang & Xiaoning Zhu, 2019. "Container Loading Optimization in Rail–Truck Intermodal Terminals Considering Energy Consumption," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Schulz, Arne & Fliedner, Malte & Fiedrich, Benedikt & Pfeiffer, Christian, 2021. "Levelling crane workload in multi-yard rail-road container terminals," European Journal of Operational Research, Elsevier, vol. 293(3), pages 941-954.
    3. Gang Ren & Xiaohan Wang & Jiaxin Cai & Shujuan Guo, 2021. "Allocation and Scheduling of Handling Resources in the Railway Container Terminal Based on Crossing Crane Area," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    4. Mantovani, Serena & Morganti, Gianluca & Umang, Nitish & Crainic, Teodor Gabriel & Frejinger, Emma & Larsen, Eric, 2018. "The load planning problem for double-stack intermodal trains," European Journal of Operational Research, Elsevier, vol. 267(1), pages 107-119.
    5. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    6. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    7. Upadhyay, Amit & Gu, Weihua & Bolia, Nomesh, 2017. "Optimal loading of double-stack container trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 1-22.
    8. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    9. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    10. El Yaagoubi, Amina & Ferjani, Aicha & Essaghir, Yasmina & Sheikhahmadi, Farrokh & Abourraja, Mohamed Nezar & Boukachour, Jaouad & Baron, Marie-Laure & Duvallet, Claude & Khodadad-Saryazdi, Ali, 2022. "A logistic model for a french intermodal rail/road freight transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Martin Tschöke & Nils Boysen, 2018. "Container supply with multi-trailer trucks: parking strategies to speed up the gantry crane-based loading of freight trains in rail yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 319-339, March.
    12. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    13. Amit Upadhyay, 2020. "Improving Intermodal Train Operations in Indian Railways," Interfaces, INFORMS, vol. 50(4), pages 213-224, July.
    14. Konrad Stephan & Nils Boysen, 2017. "Crane scheduling in railway yards: an analysis of computational complexity," Journal of Scheduling, Springer, vol. 20(5), pages 507-526, October.
    15. Bart Wiegmans & Behzad Behdani, 2018. "A review and analysis of the investment in, and cost structure of, intermodal rail terminals," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 33-51, January.
    16. Mehran Farzadmehr & Valentin Carlan & Thierry Vanelslander, 2023. "Contemporary challenges and AI solutions in port operations: applying Gale–Shapley algorithm to find best matches," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-44, December.
    17. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    18. Shujuan Guo & Cuijie Diao & Gang Li & Katsuhiko Takahashi, 2021. "The Two-Echelon Dual-Channel Models for the Intermodal Container Terminals of the China Railway Express Considering Container Accumulation Modes," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    19. Yan, Baicheng & Jin, Jian Gang & Zhu, Xiaoning & Lee, Der-Horng & Wang, Li & Wang, Hua, 2020. "Integrated planning of train schedule template and container transshipment operation in seaport railway terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.

    More about this item

    Keywords

    Port Logistics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hiclch:249660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://hicl.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.