IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v142y2020ics1366554520307122.html
   My bibliography  Save this article

Integrated planning of train schedule template and container transshipment operation in seaport railway terminals

Author

Listed:
  • Yan, Baicheng
  • Jin, Jian Gang
  • Zhu, Xiaoning
  • Lee, Der-Horng
  • Wang, Li
  • Wang, Hua

Abstract

This paper investigates the transshipment operations between vessels and trains in seaport rail terminals. In order to get a more effective transshipment plan, the schedule plan of trains and the transshipment plan of containers among vessels, yards, and trains are determined simultaneously. To this end, a mixed integer programming (MIP) model is proposed to integrate the two sub-problems with the objective of minimizing the total operation cost, in which the service time window and unloading time requirement of trains are considered. It is demonstrated that some variables in the model can be relaxed without influencing the optimal result. Moreover, a set of valid inequalities are introduced to tighten the constraints. The result experiments show that the enhanced model can be solved more effectively. Then, extensive experiments have been conducted to analyze the influence of several factors, including the handling capacity, the yard capacity, and the value of unit cost. The results report that the handling capacity shows a significant effect on the performance of the transfer plan, and increasing the storage cost of import containers leads to a more effective transshipment plan.

Suggested Citation

  • Yan, Baicheng & Jin, Jian Gang & Zhu, Xiaoning & Lee, Der-Horng & Wang, Li & Wang, Hua, 2020. "Integrated planning of train schedule template and container transshipment operation in seaport railway terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307122
    DOI: 10.1016/j.tre.2020.102061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520307122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Der-Horng & Jin, Jian Gang, 2013. "Feeder vessel management at container transshipment terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 201-216.
    2. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    3. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    4. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
    5. Andersen, Jardar & Crainic, Teodor Gabriel & Christiansen, Marielle, 2009. "Service network design with management and coordination of multiple fleets," European Journal of Operational Research, Elsevier, vol. 193(2), pages 377-389, March.
    6. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    7. Simon Emde & Nils Boysen, 2016. "Berth allocation in container terminals that service feeder ships and deep-sea vessels," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(4), pages 551-563, April.
    8. Xie, Ying & Song, Dong-Ping, 2018. "Optimal planning for container prestaging, discharging, and loading processes at seaport rail terminals with uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 88-109.
    9. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    10. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    11. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    12. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    13. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    14. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    15. Wang, Hua & Wang, Xinchang & Zhang, Xiaoning, 2017. "Dynamic resource allocation for intermodal freight transportation with network effects: Approximations and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 83-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongbin Zhao & Xifu Wang & Suxin Cheng & Wei Liu & Lijun Jiang, 2022. "A New Synchronous Handling Technology of Double Stack Container Trains in Sea-Rail Intermodal Terminals," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    2. Shujuan Guo & Cuijie Diao & Gang Li & Katsuhiko Takahashi, 2021. "The Two-Echelon Dual-Channel Models for the Intermodal Container Terminals of the China Railway Express Considering Container Accumulation Modes," Sustainability, MDPI, vol. 13(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crainic, Teodor Gabriel & Perboli, Guido & Rosano, Mariangela, 2018. "Simulation of intermodal freight transportation systems: a taxonomy," European Journal of Operational Research, Elsevier, vol. 270(2), pages 401-418.
    2. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    3. Guo, Peng & Weidinger, Felix & Boysen, Nils, 2019. "Parallel machine scheduling with job synchronization to enable efficient material flows in hub terminals," Omega, Elsevier, vol. 89(C), pages 110-121.
    4. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    5. Rupp, Johannes & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing consolidation processes in hubs: The hub-arrival-departure problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1051-1066.
    6. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    7. Zhang, An & Qi, Xiangtong & Li, Guanhua, 2020. "Machine scheduling with soft precedence constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 491-505.
    8. Guo, Liming & Zheng, Jianfeng & Du, Jian & Gao, Ziyou & Fagerholt, Kjetil, 2024. "Integrated planning of berth allocation, quay crane assignment and yard assignment in multiple cooperative terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    9. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    10. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    11. Stefan Fedtke & Nils Boysen, 2017. "Gantry crane and shuttle car scheduling in modern rail–rail transshipment yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 473-503, March.
    12. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    13. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    14. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    15. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    16. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    17. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    18. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    19. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    20. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.