IDEAS home Printed from https://ideas.repec.org/f/pwe402.html
   My authors  Follow this author

Sebastian Wehrle

Personal Details

First Name:Sebastian
Middle Name:
Last Name:Wehrle
Suffix:
RePEc Short-ID:pwe402
[This author has chosen not to make the email address public]
https://sebwehrle.github.io

Affiliation

Department für Wirtschafts- und Sozialwissenschaften
Universität für Bodenkultur

Wien, Austria
http://www.wiso.boku.ac.at/
RePEc:edi:wbokuat (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
  2. Sebastian Wehrle & Johannes Schmidt & Christian Mikovits, 2020. "The Cost of Undisturbed Landscapes," Papers 2006.08009, arXiv.org, revised Dec 2020.
  3. Claude Klockl & Katharina Gruber & Peter Regner & Sebastian Wehrle & Johannes Schmidt, 2019. "The perils of automated fitting of datasets: the case of a wind turbine cost model," Papers 1905.08870, arXiv.org, revised Dec 2021.
  4. Sebastian Wehrle & Johannes Schmidt, 2018. "District heating systems under high CO2 emission prices: the role of the pass-through from emission cost to electricity prices," Papers 1810.02109, arXiv.org.
  5. Wehrle, Sebastian & Schmidt, Johannes, 2016. "Optimal emission prices for a district heating system owner," Discussion Papers DP-64-2016, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.

Articles

  1. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
  2. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
  3. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
  4. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.

    Cited by:

    1. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).

  2. Sebastian Wehrle & Johannes Schmidt & Christian Mikovits, 2020. "The Cost of Undisturbed Landscapes," Papers 2006.08009, arXiv.org, revised Dec 2020.

    Cited by:

    1. Lehmann, Paul & Tafarte, Philip, 2024. "Exclusion zones for renewable energy deployment: One man’s blessing, another man’s curse," Resource and Energy Economics, Elsevier, vol. 76(C).
    2. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    3. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    4. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).

Articles

  1. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.

    Cited by:

    1. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2023. "Incorporating indirect costs into energy system optimization models: Application to the Dutch national program Regional Energy Strategies," Energy, Elsevier, vol. 276(C).
    2. Hedenus, F. & Jakobsson, N. & Reichenberg, L. & Mattsson, N., 2022. "Historical wind deployment and implications for energy system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Lamnatou, Chr. & Cristofari, C. & Chemisana, D., 2024. "Renewable energy sources as a catalyst for energy transition: Technological innovations and an example of the energy transition in France," Renewable Energy, Elsevier, vol. 221(C).
    4. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    5. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    6. Nicholas Christakis & Ioanna Evangelou & Dimitris Drikakis & George Kossioris, 2024. "A Computational Methodology for Assessing Wind Potential," Energies, MDPI, vol. 17(6), pages 1-23, March.
    7. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    8. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
    9. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    10. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    11. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    13. Benalcazar, Pablo & Komorowska, Aleksandra & Kamiński, Jacek, 2024. "A GIS-based method for assessing the economics of utility-scale photovoltaic systems," Applied Energy, Elsevier, vol. 353(PA).
    14. Gangopadhyay, Anasuya & Seshadri, Ashwin K. & Patil, Balachandra, 2024. "Wind-solar-storage trade-offs in a decarbonizing electricity system," Applied Energy, Elsevier, vol. 353(PA).
    15. Ammara Kanwal & Zia ul Rehman Tahir & Muhammad Asim & Nasir Hayat & Muhammad Farooq & Muhammad Abdullah & Muhammad Azhar, 2023. "Evaluation of Reanalysis and Analysis Datasets against Measured Wind Data for Wind Resource Assessment," Energy & Environment, , vol. 34(5), pages 1258-1284, August.
    16. Dahai Zhang & Yiming Wang & Yongjian Jiang & Tao Zhao & Haiyang Xu & Peng Qian & Chenglong Li, 2024. "A Novel Wind Turbine Rolling Element Bearing Fault Diagnosis Method Based on CEEMDAN and Improved TFR Demodulation Analysis," Energies, MDPI, vol. 17(4), pages 1-16, February.
    17. Thimet, P.J. & Mavromatidis, G., 2023. "What-where-when: Investigating the role of storage for the German electricity system transition," Applied Energy, Elsevier, vol. 351(C).
    18. Franke, Katja & Garcia, Joshua Fragoso & Kleinschmitt, Christoph & Sensfuß, Frank, 2024. "Assessing worldwide future potentials of renewable electricity generation: Installable capacity, full load hours and costs," Renewable Energy, Elsevier, vol. 226(C).
    19. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.
    20. Gangopadhyay, A. & Seshadri, A.K. & Sparks, N.J. & Toumi, R., 2022. "The role of wind-solar hybrid plants in mitigating renewable energy-droughts," Renewable Energy, Elsevier, vol. 194(C), pages 926-937.
    21. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
    22. Antonio Jiménez-Garrote & Francisco J. Santos-Alamillos & Guadalupe Sánchez-Hernández & Miguel López-Cuesta & José A. Ruiz-Arias & David Pozo-Vázquez, 2024. "Evaluation of a Database of the Spanish Wind Energy Resources Derived from a Regional Reanalysis," Energies, MDPI, vol. 17(7), pages 1-25, March.
    23. Ikäheimo, Jussi & Lindroos, Tomi J. & Kiviluoma, Juha, 2023. "Impact of climate and geological storage potential on feasibility of hydrogen fuels," Applied Energy, Elsevier, vol. 342(C).
    24. Junejo, Allah Rakhio & Gilal, Nauman Ullah & Doh, Jaehyeok, 2023. "Physics-informed optimization of robust control system to enhance power efficiency of renewable energy: Application to wind turbine," Energy, Elsevier, vol. 263(PB).
    25. Lohr, C. & Schlemminger, M. & Peterssen, F. & Bensmann, A. & Niepelt, R. & Brendel, R. & Hanke-Rauschenbach, R., 2022. "Spatial concentration of renewables in energy system optimization models," Renewable Energy, Elsevier, vol. 198(C), pages 144-154.

  2. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).

    Cited by:

    1. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    2. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2024. "Prediction of hourly wind speed time series at unsampled locations using machine learning," Energy, Elsevier, vol. 299(C).
    3. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    4. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
    5. Emily Cowin & Changlong Wang & Stuart D. C. Walsh, 2023. "Assessing Predictions of Australian Offshore Wind Energy Resources from Reanalysis Datasets," Energies, MDPI, vol. 16(8), pages 1-21, April.
    6. Delbeke, Oscar & Moschner, Jens D. & Driesen, Johan, 2023. "The complementarity of offshore wind and floating photovoltaics in the Belgian North Sea, an analysis up to 2100," Renewable Energy, Elsevier, vol. 218(C).
    7. Liu, Fa & Wang, Xunming & Sun, Fubao & Kleidon, Axel, 2023. "Potential impact of global stilling on wind energy production in China," Energy, Elsevier, vol. 263(PB).
    8. He, Yuhang & Han, Xingxing & Xu, Chang & Cheng, Zhe & Wang, Jincheng & Liu, Wei & Xu, Dong, 2023. "Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model," Energy, Elsevier, vol. 285(C).
    9. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Bekirsky, N. & Hoicka, C.E. & Brisbois, M.C. & Ramirez Camargo, L., 2022. "Many actors amongst multiple renewables: A systematic review of actor involvement in complementarity of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Langer, Jannis & Zaaijer, Michiel & Quist, Jaco & Blok, Kornelis, 2023. "Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia," Renewable Energy, Elsevier, vol. 202(C), pages 320-335.
    12. José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    13. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    14. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.

  3. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).

    Cited by:

    1. Andrea Dumančić & Nela Vlahinić & Minea Skok, 2024. "Replacing Gray Hydrogen with Renewable Hydrogen at the Consumption Location Using the Example of the Existing Fertilizer Plant," Sustainability, MDPI, vol. 16(15), pages 1-34, July.
    2. Jimenez, I. Sanchez & Ribó-Pérez, D. & Cvetkovic, M. & Kochems, J. & Schimeczek, C. & de Vries, L.J., 2024. "Can an energy only market enable resource adequacy in a decarbonized power system? A co-simulation with two agent-based-models," Applied Energy, Elsevier, vol. 360(C).
    3. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    4. Tabandeh, Abbas & Hossain, M.J. & Li, Li, 2022. "Integrated multi-stage and multi-zone distribution network expansion planning with renewable energy sources and hydrogen refuelling stations for fuel cell vehicles," Applied Energy, Elsevier, vol. 319(C).
    5. Juan José Patiño & Carlos Velásquez & Edwin Ramirez & Rafael Betancur & Juan Felipe Montoya & Edwin Chica & Pablo Romero-Gómez & Arunachala Mada Kannan & Daniel Ramírez & Pedro Eusse & Franklin Jarami, 2023. "Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies," Energies, MDPI, vol. 16(23), pages 1-21, November.
    6. Milana Treshcheva & Daria Kolbantseva & Irina Anikina & Dmitriy Treshchev & Konstantin Kalmykov & Iaroslav Vladimirov, 2023. "Efficiency of Using Heat Pumps in a Hydrogen Production Unit at Steam-Powered Thermal Power Plants," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    7. Song, Feng & Cui, Jian & Yu, Yihua, 2022. "Dynamic volatility spillover effects between wind and solar power generations: Implications for hedging strategies and a sustainable power sector," Economic Modelling, Elsevier, vol. 116(C).
    8. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.

  4. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 4 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (4) 2018-10-15 2019-05-27 2020-07-27 2021-03-22. Author is listed
  2. NEP-ENV: Environmental Economics (2) 2018-10-15 2021-03-22. Author is listed
  3. NEP-REG: Regulation (1) 2018-10-15. Author is listed

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Sebastian Wehrle should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.