IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9139-d1503613.html
   My bibliography  Save this article

Optimizing Sustainability Offshore Hybrid Tidal-Wind Energy Storage Systems for an Off-Grid Coastal City in South Africa

Author

Listed:
  • Ladislas Mutunda Kangaji

    (Department of Electrical and Electronic Engineering, Cape Peninsula University of Cape Town, Cape Town 7535, South Africa)

  • Atanda Raji

    (Department of Electrical and Electronic Engineering, Cape Peninsula University of Cape Town, Cape Town 7535, South Africa)

  • Efe Orumwense

    (Department of Mechanical Engineering, Cape Peninsula University of Cape Town, Cape Town 7535, South Africa)

Abstract

South Africa’s extensive marine energy resources present a unique opportunity for advancing sustainable energy solutions. This study focuses on developing a sustainable hybrid power generation system that combines offshore wind and tidal current energy to provide a stable, renewable energy supply for off-grid coastal communities. By addressing the challenges of intermittency and unpredictability in renewable energy sources, the proposed system integrates wind and tidal energy with energy storage and diesel backup to ensure reliability while reducing greenhouse gas emissions and minimizing the environmental footprint. The system is optimized for sustainability, with a configuration of one wind turbine, five tidal turbines, and a diesel generator demonstrated to be the most effective in increasing the renewable energy fraction and lowering the net present cost. Simulations conducted using HOMER Pro version 3.20 software underscore the potential of this hybrid system to support South Africa’s transition to a more sustainable energy future, aligning with national and global sustainability goals. The results emphasize the environmental benefits of combining these renewable energy sources, offering a blueprint for achieving energy security and sustainable development in coastal regions.

Suggested Citation

  • Ladislas Mutunda Kangaji & Atanda Raji & Efe Orumwense, 2024. "Optimizing Sustainability Offshore Hybrid Tidal-Wind Energy Storage Systems for an Off-Grid Coastal City in South Africa," Sustainability, MDPI, vol. 16(21), pages 1-33, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9139-:d:1503613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christy Pérez & Michel Rivero & Mauricio Escalante & Victor Ramirez & Damien Guilbert, 2023. "Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan," Energies, MDPI, vol. 16(10), pages 1-20, May.
    2. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    3. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    2. Gangopadhyay, A. & Seshadri, A.K. & Sparks, N.J. & Toumi, R., 2022. "The role of wind-solar hybrid plants in mitigating renewable energy-droughts," Renewable Energy, Elsevier, vol. 194(C), pages 926-937.
    3. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2019. "A unified model to optimize configuration of battery energy storage systems with multiple types of batteries," Energy, Elsevier, vol. 176(C), pages 552-560.
    4. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    5. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    6. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    7. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    8. Mostafa Rezaeimozafar & Mohsen Eskandari & Mohammad Hadi Amini & Mohammad Hasan Moradi & Pierluigi Siano, 2020. "A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids," Energies, MDPI, vol. 13(7), pages 1-25, April.
    9. Mohammed Chakib Sekkal & Zakarya Ziani & Moustafa Yassine Mahdad & Sidi Mohammed Meliani & Mohammed Haris Baghli & Mohammed Zakaria Bessenouci, 2024. "Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance," Energies, MDPI, vol. 17(4), pages 1-34, February.
    10. Yadav, Deepak & Banerjee, Rangan, 2018. "A comparative life cycle energy and carbon emission analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Applied Energy, Elsevier, vol. 229(C), pages 577-602.
    11. Antonio Jiménez-Garrote & Francisco J. Santos-Alamillos & Guadalupe Sánchez-Hernández & Miguel López-Cuesta & José A. Ruiz-Arias & David Pozo-Vázquez, 2024. "Evaluation of a Database of the Spanish Wind Energy Resources Derived from a Regional Reanalysis," Energies, MDPI, vol. 17(7), pages 1-25, March.
    12. Thomas T. D. Tran & Amanda D. Smith, 2019. "Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use," Energies, MDPI, vol. 12(3), pages 1-26, February.
    13. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    14. Parihar, Amit Kumar Singh & Sethi, Virendra & Banerjee, Rangan, 2019. "Sizing of biomass based distributed hybrid power generation systems in India," Renewable Energy, Elsevier, vol. 134(C), pages 1400-1422.
    15. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    16. Marija Miletić & Hrvoje Pandžić & Dechang Yang, 2020. "Operating and Investment Models for Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-33, September.
    17. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2023. "Incorporating indirect costs into energy system optimization models: Application to the Dutch national program Regional Energy Strategies," Energy, Elsevier, vol. 276(C).
    18. Wei Ma & Wei Wang & Xuezhi Wu & Ruonan Hu & Fen Tang & Weige Zhang, 2019. "Control Strategy of a Hybrid Energy Storage System to Smooth Photovoltaic Power Fluctuations Considering Photovoltaic Output Power Curtailment," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    19. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    20. Noah Lee & Chen Hon Nee & Seong Shan Yap & Kwong Keong Tham & Ah Heng You & Seong Ling Yap & Abdul Kariem Bin Mohd Arof, 2022. "Capacity Sizing of Embedded Control Battery–Supercapacitor Hybrid Energy Storage System," Energies, MDPI, vol. 15(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9139-:d:1503613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.