IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5877-d814376.html
   My bibliography  Save this article

Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria

Author

Listed:
  • Geovanni Hernández Galvez

    (Universidad Popular de la Chontalpa, Carretera Cárdenas-Huimanguillo km 2. Ranchería Paso y Playa, Cárdenas 86556, Tabasco, Mexico)

  • Daniel Chuck Liévano

    (Universidad Popular de la Chontalpa, Carretera Cárdenas-Huimanguillo km 2. Ranchería Paso y Playa, Cárdenas 86556, Tabasco, Mexico)

  • Omar Sarracino Martínez

    (Universidad Popular de la Chontalpa, Carretera Cárdenas-Huimanguillo km 2. Ranchería Paso y Playa, Cárdenas 86556, Tabasco, Mexico)

  • Orlando Lastres Danguillecourt

    (Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29000, Chiapas, Mexico)

  • José Rafael Dorrego Portela

    (Universidad del Istmo, Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz, 4a. Sección Sto. Domingo Tehuantepec, Tehuantepec 70760, Oaxaca, Mexico)

  • Antonio Trujillo Narcía

    (Universidad Popular de la Chontalpa, Carretera Cárdenas-Huimanguillo km 2. Ranchería Paso y Playa, Cárdenas 86556, Tabasco, Mexico)

  • Ricardo Saldaña Flores

    (Instituto Nacional de Electricidad y Energías Limpias, Calle Reforma #113, Col. Palmira Cuernavaca, Cuernavaca 62490, Morelos, Mexico)

  • Liliana Pampillón González

    (Universidad Juárez Autónoma de Tabasco, División de Ciencias Biológicas, Carretera Villahermosa-Cárdenas km 0.5. S/N, Ranchería Emiliano Zapata, Villahermosa 86150, Tabasco, Mexico)

  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, Radiología y Medicina Física, Edificio Albert Einstein, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain)

  • Quetzalcoatl Hernandez-Escobedo

    (Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Queretaro 76230, Mexico)

Abstract

Mexico has more than 40 years of researching, investing, and obtaining electric power through wind energy. Within the country, there are highly windy areas, such as the Isthmus of Tehuantepec or the state of Tamaulipas, and there are about 2500 MW installed and 70,000 MW tested, all onshore. There are still no offshore wind farms in Mexico, despite having two main coasts, the East and the West, with the Gulf of Mexico and the Pacific Ocean, respectively. Although the Mexican coastal states of the Gulf of Mexico are Tamaulipas, Veracruz, Tabasco, Campeche, and Yucatán, this work focuses on the study and feasibility of offshore wind energy use on the coasts of the states of Tabasco, Campeche, and Yucatán. This is because of the availability of data in that region; however, sustainability criteria that can be used in other regions are also presented. MERRA-2 and ERA5 data were used employing WAsP and Windographer software. It was found that the capacity factor in the area of Tabasco, Campeche, and Yucatán is 32%, 37%, and 46%. It can be noted that, in the WF100% scenario, each of the wind farms could contribute more than 35% of the region’s electricity consumption; those of Campeche and Yucatán stand out with contributions of more than 70%.

Suggested Citation

  • Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5877-:d:814376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    2. Gruber, Katharina & Klöckl, Claude & Regner, Peter & Baumgartner, Johann & Schmidt, Johannes, 2019. "Assessing the Global Wind Atlas and local measurements for bias correction of wind power generation simulated from MERRA-2 in Brazil," Energy, Elsevier, vol. 189(C).
    3. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    4. Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
    5. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    6. Valliyil Mohammed Aboobacker & Puthuveetil Razak Shanas & Subramanian Veerasingam & Ebrahim M. A. S. Al-Ansari & Fadhil N. Sadooni & Ponnumony Vethamony, 2021. "Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar," Energies, MDPI, vol. 14(4), pages 1-21, February.
    7. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    8. Florin Onea & Eugen Rusu, 2019. "An Assessment of Wind Energy Potential in the Caspian Sea," Energies, MDPI, vol. 12(13), pages 1-18, July.
    9. Soler-Bientz, Rolando, 2011. "Preliminary results from a network of stations for wind resource assessment at North of Yucatan Peninsula," Energy, Elsevier, vol. 36(1), pages 538-548.
    10. Alberto-Jesus Perea-Moreno & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2019. "Seasonal Wind Energy Characterization in the Gulf of Mexico," Energies, MDPI, vol. 13(1), pages 1-21, December.
    11. Jared A. Lee & Paula Doubrawa & Lulin Xue & Andrew J. Newman & Caroline Draxl & George Scott, 2019. "Wind Resource Assessment for Alaska’s Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set," Energies, MDPI, vol. 12(14), pages 1-22, July.
    12. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    13. Amer Al-Hinai & Yassine Charabi & Seyed H. Aghay Kaboli, 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    14. Mattar, Cristian & Guzmán-Ibarra, María Cristina, 2017. "A techno-economic assessment of offshore wind energy in Chile," Energy, Elsevier, vol. 133(C), pages 191-205.
    15. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    16. Carrasco-Díaz, Magdiel & Rivas, David & Orozco-Contreras, Manuel & Sánchez-Montante, Orzo, 2015. "An assessment of wind power potential along the coast of Tamaulipas, northeastern Mexico," Renewable Energy, Elsevier, vol. 78(C), pages 295-305.
    17. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    3. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    4. Italo Fernandes & Felipe M. Pimenta & Osvaldo R. Saavedra & Arcilan T. Assireu, 2022. "Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation," Energies, MDPI, vol. 15(19), pages 1-24, September.
    5. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    6. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    7. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Herrero-Novoa, Cristina & Pérez, Isidro A. & Sánchez, M. Luisa & García, Ma Ángeles & Pardo, Nuria & Fernández-Duque, Beatriz, 2017. "Wind speed description and power density in northern Spain," Energy, Elsevier, vol. 138(C), pages 967-976.
    9. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    10. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2024. "Prediction of hourly wind speed time series at unsampled locations using machine learning," Energy, Elsevier, vol. 299(C).
    11. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Abdelaziz, Sara & Sparrow, Sarah N. & Hua, Weiqi & Wallom, David C.H., 2024. "Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone," Applied Energy, Elsevier, vol. 354(PB).
    13. Majidi Nezhad, M. & Heydari, A. & Pirshayan, E. & Groppi, D. & Astiaso Garcia, D., 2021. "A novel forecasting model for wind speed assessment using sentinel family satellites images and machine learning method," Renewable Energy, Elsevier, vol. 179(C), pages 2198-2211.
    14. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    15. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    16. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    17. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    18. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    19. César Sánchez-Rucobo y Huerdo & Ma. Eugenia Allende-Arandía & Bernardo Figueroa-Espinoza & Estefanía García-Caballero & Adolfo Contreras-Ruiz Esparza & Christian M. Appendini, 2023. "Hybrid Renewable Energy System for Terminos Lagoon, Campeche, Mexico," Energies, MDPI, vol. 16(10), pages 1-26, May.
    20. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5877-:d:814376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.