IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018103.html
   My bibliography  Save this article

Multiple spatial-temporal scales assessment of solar and wind resources potential integrating geospatial-technology-correlation indicators: A case study of Hunan Province

Author

Listed:
  • Zhang, Xiaofeng
  • Xia, Peng
  • Peng, Fen
  • Xiao, Min
  • Zhao, Tingbo
  • Fu, Ang
  • Wang, Meng
  • Sun, Xiaoqin

Abstract

Achieving the green transformation of energy structure requires extensive utilization of renewable energy, especially wind and solar energy. However, spatial distribution and correlation between solar and wind resources in provincial region are unclear, hinders their further development. To accurately assess provincial solar and wind potential, a multiple spatial and temporal assessment model based on geographic information system is proposed, which integrates geographic constraint analysis, resource potential quantification, correlation analysis, cluster analysis and gravity model. The model forms a more comprehensive evaluation of renewable energy, including resource capacity and distribution at multiple temporal and spatial scales, resource-rich area distribution, multi-energy correlation characteristic and regional energy interaction potential. The results showed that geographical potentials for photovoltaic and wind power in Hunan Province are 27698.73 km2 and 35013.38 km2, with an annual average of 608903.23 GWh and 187544.84 GWh, respectively. The highest contributions of resource potential are Yongzhou, Hengyang and Yueyang. Hengyang exhibits strong potential for supplying neighboring cities. Solar and wind energy in Hunan display a certain spatial synergy and complementarity, but weak correlation in hourly and monthly scales. The evaluation model can provide theoretical and practical guidance for renewable energy macro-analysis, project planning and precise decision-making.

Suggested Citation

  • Zhang, Xiaofeng & Xia, Peng & Peng, Fen & Xiao, Min & Zhao, Tingbo & Fu, Ang & Wang, Meng & Sun, Xiaoqin, 2024. "Multiple spatial-temporal scales assessment of solar and wind resources potential integrating geospatial-technology-correlation indicators: A case study of Hunan Province," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018103
    DOI: 10.1016/j.energy.2024.132036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwak, Yoonshin & Deal, Brian & Heavisides, Tom, 2021. "A large scale multi criteria suitability analysis for identifying solar development potential: A decision support approach for the state of Illinois, USA," Renewable Energy, Elsevier, vol. 177(C), pages 554-567.
    2. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    3. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    4. Dayal, Kunal K. & Bellon, Gilles & Cater, John E. & Kingan, Michael J. & Sharma, Rajnish N., 2021. "High-resolution mesoscale wind-resource assessment of Fiji using the Weather Research and Forecasting (WRF) model," Energy, Elsevier, vol. 232(C).
    5. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    6. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    7. Zhuo, Chen & Junhong, Guo & Wei, Li & Fei, Zhang & Chan, Xiao & Zhangrong, Pan, 2022. "Changes in wind energy potential over China using a regional climate model ensemble," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    9. Yang, Qing & Huang, Tianyue & Wang, Saige & Li, Jiashuo & Dai, Shaoqing & Wright, Sebastian & Wang, Yuxuan & Peng, Huaiwu, 2019. "A GIS-based high spatial resolution assessment of large-scale PV generation potential in China," Applied Energy, Elsevier, vol. 247(C), pages 254-269.
    10. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).
    11. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    12. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    13. Costa-Campi, Maria Teresa & Davi-Arderius, Daniel & Trujillo-Baute, Elisa, 2020. "Locational impact and network costs of energy transition: Introducing geographical price signals for new renewable capacity," Energy Policy, Elsevier, vol. 142(C).
    14. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    15. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    16. Deshmukh, Ranjit & Wu, Grace C. & Callaway, Duncan S. & Phadke, Amol, 2019. "Geospatial and techno-economic analysis of wind and solar resources in India," Renewable Energy, Elsevier, vol. 134(C), pages 947-960.
    17. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    18. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    19. Kucuksari, Sadik & Khaleghi, Amirreza M. & Hamidi, Maryam & Zhang, Ye & Szidarovszky, Ferenc & Bayraksan, Guzin & Son, Young-Jun, 2014. "An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments," Applied Energy, Elsevier, vol. 113(C), pages 1601-1613.
    20. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    21. Franke, Katja & Sensfuß, Frank & Deac, Gerda & Kleinschmitt, Christoph & Ragwitz, Mario, 2021. "Factors affecting the calculation of wind power potentials: A case study of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    22. Siala, Kais & Stich, Jürgen, 2016. "Estimation of the PV potential in ASEAN with a high spatial and temporal resolution," Renewable Energy, Elsevier, vol. 88(C), pages 445-456.
    23. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    24. Kostić, Rastko & Mikulović, Jovan, 2017. "The empirical models for estimating solar insolation in Serbia by using meteorological data on cloudiness," Renewable Energy, Elsevier, vol. 114(PB), pages 1281-1293.
    25. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    26. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    27. Jani, Hardik K. & Kachhwaha, Surendra Singh & Nagababu, Garlapati & Das, Alok, 2022. "Temporal and spatial simultaneity assessment of wind-solar energy resources in India by statistical analysis and machine learning clustering approach," Energy, Elsevier, vol. 248(C).
    28. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    2. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    3. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    4. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    5. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    6. Wang, Peng & Zhang, Shuainan & Pu, Yanru & Cao, Shuchao & Zhang, Yuhu, 2021. "Estimation of photovoltaic power generation potential in 2020 and 2030 using land resource changes: An empirical study from China," Energy, Elsevier, vol. 219(C).
    7. Miyake, Saori & Teske, Sven & Rispler, Jonathan & Feenstra, Maartje, 2024. "Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).
    9. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    10. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2022. "Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality," Renewable Energy, Elsevier, vol. 197(C), pages 138-150.
    11. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    13. Hou, Wenjuan & Zhang, Xueliang & Wu, Maowei & Yuxin Feng, & Yang, Linsheng, 2022. "Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China," Energy, Elsevier, vol. 261(PB).
    14. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    16. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    17. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    18. Obane, Hideaki & Nagai, Yu & Asano, Kenji, 2020. "Assessing land use and potential conflict in solar and onshore wind energy in Japan," Renewable Energy, Elsevier, vol. 160(C), pages 842-851.
    19. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.