Author
Listed:
- Antonio Mucherino
(University of Florida)
- Petraq J. Papajorgji
(University of Florida)
- Panos M. Pardalos
(University of Florida)
Abstract
Clustering techniques are used for finding suitable groupings of samples belonging to a given set of data. There is no knowledge a priori about these data. Therefore, such set of samples cannot be considered as a training set, and classification techniques cannot be used in this case. The k-means algorithm is one of the most popular algorithms for clustering [103]. It is one of the most used algorithms for data mining, as it has been placed among the top 10 algorithms for data mining in [237]. The k-means algorithm partitions a set of data into a number k of disjoint clusters by looking for inherent patterns in the set. The parameter k is usually much smaller than the dimension of the set of samples, and, in general, it needs to have a predetermined value before using the algorithm. There are cases where the value of k can be derived from the problem studied. For instance, in the example of the blood test analysis (see Section 1.1), the aim is to distinguish between healthy and sick patients. Hence, two different clusters can be defined, and then k = 2. In other applications, however, the parameter k may not be defined as easily. In the example of separating good apples from bad ones (see Section 1.1), images of apples need to be analyzed. The set of apple images can be partitioned in different ways. One partition can be obtained by dividing apples into two clusters, one containing apples with defects and another one containing good apples. In this case k = 2. However, defective apples can be classified based on the degree of the defect. For instance, if the apples have a defect which is not very visible, then these apples could be sold with a lower price. Therefore, even defective apples can be grouped in different clusters. In this case, k shows the number of defects that are taken into consideration. When there is uncertainty on the value of the parameter k, a set of possible values is considered and the algorithm is carried out for each of the values. The best obtained partition in clusters can then be considered.
Suggested Citation
Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009.
"Clustering by k-means,"
Springer Optimization and Its Applications, in: Data Mining in Agriculture, chapter 0, pages 47-82,
Springer.
Handle:
RePEc:spr:spochp:978-0-387-88615-2_3
DOI: 10.1007/978-0-387-88615-2_3
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-88615-2_3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.