IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-88615-2_7.html
   My bibliography  Save this book chapter

Biclustering

In: Data Mining in Agriculture

Author

Listed:
  • Antonio Mucherino

    (University of Florida)

  • Petraq J. Papajorgji

    (University of Florida)

  • Panos M. Pardalos

    (University of Florida)

Abstract

Clustering techniques aim at partitioning a given set of data into clusters. Chapter 3 presents the basic k-means approach and many variants to the standard algorithm. All these algorithms search for an optimal partition in clusters of a given set of samples. The number of clusters is usually denoted by the symbol k. As previously discussed in Chapter 3, each cluster is usually labeled with an integer number ranging from 0 to k- 1. Once a partition is available for a certain set of samples, the samples can then be sorted by the label of the corresponding cluster in the partition. If a color is then assigned to the label, a graphic visualization of the partition in clusters is obtained. This kind of graphic representation is used often in two-dimensional spaces for representing partitions found with biclustering methods.

Suggested Citation

  • Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "Biclustering," Springer Optimization and Its Applications, in: Data Mining in Agriculture, chapter 0, pages 143-160, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-88615-2_7
    DOI: 10.1007/978-0-387-88615-2_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-88615-2_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.