Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "Data Mining in Agriculture," Springer Optimization and Its Applications, Springer, number 978-0-387-88615-2, June.
- Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "k-Nearest Neighbor Classification," Springer Optimization and Its Applications, in: Data Mining in Agriculture, chapter 0, pages 83-106, Springer.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daeryong Park & Myoung-Jin Um & Momcilo Markus & Kichul Jung & Laura Keefer & Siddhartha Verma, 2021. "Insights from an Evaluation of Nitrate Load Estimation Methods in the Midwestern United States," Sustainability, MDPI, vol. 13(13), pages 1-23, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Johannes Berens & Kerstin Schneider & Simon Görtz & Simon Oster & Julian Burghoff, 2018.
"Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods,"
CESifo Working Paper Series
7259, CESifo.
- Schneider, Kerstin & Berens, Johannes & Oster, Simon & Burghoff, Julian, 2018. "Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181544, Verein für Socialpolitik / German Economic Association.
- Johannes Berens & Simon Oster & Kerstin Schneider & Julian Burghoff, 2018. "Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods," Schumpeter Discussion Papers sdp18006, Universitätsbibliothek Wuppertal, University Library.
- Arif Jamal Siddiqui & Sadaf Jahan & Maqsood Ahmed Siddiqui & Andleeb Khan & Mohammed Merae Alshahrani & Riadh Badraoui & Mohd Adnan, 2023. "Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Desig," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
- Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
- Hui Zou & Zhihong Zou & Xiaojing Wang, 2015. "An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China," IJERPH, MDPI, vol. 12(11), pages 1-14, November.
- Odile Carisse & Mamadou Lamine Fall, 2021. "Decision Trees to Forecast Risks of Strawberry Powdery Mildew Caused by Podosphaera aphanis," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
- Orkida Ilollari & Petraq Papajorgji & Adrian Civici & Howard Moskowitz, 2022. "Measuring Client’s Feelings on Mobile Banking," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 23(1), pages 28-39, June.
- Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
- Muhammad Islam & Muhammad Usman & Azhar Mahmood & Aaqif Afzaal Abbasi & Oh-Young Song, 2020. "Predictive analytics framework for accurate estimation of child mortality rates for Internet of Things enabled smart healthcare systems," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
- Danijel Jevtic & Romain Deleze & Joerg Osterrieder, 2022. "AI for trading strategies," Papers 2208.07168, arXiv.org.
- Orkida Ilollari & Petraq Papajorgji & Ardian Civici, 2024. "Stimulating the Post-COVID-19 Economic Recovery Scenarios to Evaluate Students' Understanding," International Journal of Sociotechnology and Knowledge Development (IJSKD), IGI Global, vol. 16(1), pages 1-14, January.
- Alexander E. Plesovskikh, 2023. "Special Economic Zones of Russia: Forecasting Decisions of Potential Residents and Resident Generation Process Modeling," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 22(2), pages 323-354.
- Bohumil Kába, 2011. "Exploratory analysis of selected indicators of the Czech Republic regional labour markets," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 59(4), pages 123-128.
- Yotsaphat Kittichotsatsawat & Varattaya Jangkrajarng & Korrakot Yaibuathet Tippayawong, 2021. "Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
- Matara Caroline Mongina & Nyambane Simpson Osano & Yusuf Amir Okeyo & Ochungo Elisha Akech & Khattak Afaq, 2024. "Classification of Particulate Matter (PM2.5) Concentrations Using Feature Selection and Machine Learning Strategies," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 85-96.
- Peláez-Rodríguez, C. & Pérez-Aracil, J. & Fister, D. & Prieto-Godino, L. & Deo, R.C. & Salcedo-Sanz, S., 2022. "A hierarchical classification/regression algorithm for improving extreme wind speed events prediction," Renewable Energy, Elsevier, vol. 201(P2), pages 157-178.
- Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.
- Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.
- Lynn Wu & Lorin Hitt & Bowen Lou, 2020. "Data Analytics, Innovation, and Firm Productivity," Management Science, INFORMS, vol. 66(5), pages 2017-2039, May.
More about this item
Keywords
data scarcity; water quality; missing data; univariate imputation; multivariate imputation; machine learning; hydroinformatics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6318-:d:567774. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.