IDEAS home Printed from https://ideas.repec.org/a/mup/actaun/actaun_2011059040123.html
   My bibliography  Save this article

Exploratory analysis of selected indicators of the Czech Republic regional labour markets

Author

Listed:
  • Bohumil Kába

    (Katedra statistiky, Provozně ekonomická fakulta, Česká zemědělská univerzita v Praze, Kamýcká 129, 165 21 Praha 6-Suchdol, Česká republika)

Abstract

This paper is focusing on the presentation of statistic exploratory procedures enabling the evaluation of the disparities in regional labour markets in the Czech Republic. Most of the data on labour markets are of multidimensional nature since both employment and unemployment can be described by a lot of various indicators offered by the Ministry of Labour and Social Affairs of the Czech Republic and by the Czech Statistical Office. An analysis of the data collected hence, has to employ multivariate statistical procedures. The choice of indicators in the study presented has been carried out such that it can represent the phenomena basically affecting the economic position of separate regions. The number of indicators analyzed has been limited by the level of applicability of the multivariate methods of statistical processing chosen. In order to reach the target of the paper the indicators of employment and unemployment have been applied to order the separate CR regions and to identify the regions outlying. To this end a composite indicator has been constructed by the so-called point method, one that is capable of aggregating the information supplied by all the separate indicators considered. The first section of the paper describes the way of construction of this aggregate indicator. In the next section then, some algorithms of the cluster analysis are introduced that have been employed to classify regional labour markets of the CR in more detail.

Suggested Citation

  • Bohumil Kába, 2011. "Exploratory analysis of selected indicators of the Czech Republic regional labour markets," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 59(4), pages 123-128.
  • Handle: RePEc:mup:actaun:actaun_2011059040123
    DOI: 10.11118/actaun201159040123
    as

    Download full text from publisher

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201159040123.html
    Download Restriction: free of charge

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201159040123.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.11118/actaun201159040123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "Data Mining in Agriculture," Springer Optimization and Its Applications, Springer, number 978-0-387-88615-2, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Zou & Zhihong Zou & Xiaojing Wang, 2015. "An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China," IJERPH, MDPI, vol. 12(11), pages 1-14, November.
    2. Odile Carisse & Mamadou Lamine Fall, 2021. "Decision Trees to Forecast Risks of Strawberry Powdery Mildew Caused by Podosphaera aphanis," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    3. Orkida Ilollari & Petraq Papajorgji & Adrian Civici & Howard Moskowitz, 2022. "Measuring Client’s Feelings on Mobile Banking," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 23(1), pages 28-39, June.
    4. Muhammad Islam & Muhammad Usman & Azhar Mahmood & Aaqif Afzaal Abbasi & Oh-Young Song, 2020. "Predictive analytics framework for accurate estimation of child mortality rates for Internet of Things enabled smart healthcare systems," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
    5. Danijel Jevtic & Romain Deleze & Joerg Osterrieder, 2022. "AI for trading strategies," Papers 2208.07168, arXiv.org.
    6. Yotsaphat Kittichotsatsawat & Varattaya Jangkrajarng & Korrakot Yaibuathet Tippayawong, 2021. "Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    7. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.
    8. Lynn Wu & Lorin Hitt & Bowen Lou, 2020. "Data Analytics, Innovation, and Firm Productivity," Management Science, INFORMS, vol. 66(5), pages 2017-2039, May.
    9. Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
    10. Johannes Berens & Kerstin Schneider & Simon Görtz & Simon Oster & Julian Burghoff, 2018. "Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods," CESifo Working Paper Series 7259, CESifo.
    11. Arif Jamal Siddiqui & Sadaf Jahan & Maqsood Ahmed Siddiqui & Andleeb Khan & Mohammed Merae Alshahrani & Riadh Badraoui & Mohd Adnan, 2023. "Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Desig," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    12. Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
    13. Orkida Ilollari & Petraq Papajorgji & Ardian Civici, 2024. "Stimulating the Post-COVID-19 Economic Recovery Scenarios to Evaluate Students' Understanding," International Journal of Sociotechnology and Knowledge Development (IJSKD), IGI Global, vol. 16(1), pages 1-14, January.
    14. Rafael Rodríguez & Marcos Pastorini & Lorena Etcheverry & Christian Chreties & Mónica Fossati & Alberto Castro & Angela Gorgoglione, 2021. "Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    15. Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mup:actaun:actaun_2011059040123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://mendelu.cz/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.