IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-88615-2_2.html
   My bibliography  Save this book chapter

Statistical Based Approaches

In: Data Mining in Agriculture

Author

Listed:
  • Antonio Mucherino

    (University of Florida)

  • Petraq J. Papajorgji

    (University of Florida)

  • Panos M. Pardalos

    (University of Florida)

Abstract

Principal component analysis (PCA) is a method used to reduce the dimension of a given set of data while retaining the variability present in the set. Each set of data contains information represented through vectors of single variables (that usually have real, integer or binary values). For instance, a geometric point in the threedimensional space can be represented through a vector having three variables, each one associated to one of the three coordinate axes x, y and z. In general, a sample can be represented by a vector formed by a certain number of variables. Such number of variables defines the length of the vectors contained in the set, and hence the dimension of the set. Moreover, for each variable, a certain range of variability can be defined, which determines the interval of values that the single variable can take. For instance, if the set of data contains three-dimensional points delimited into a cube having side 1 and centered in (0, 0, 0), then the three variables representing the Cartesian coordinates are bounded to have values in $$\left[-\frac{1}{2}, \frac{1}{2}\right]$$ . This interval defines the range of variability of the three variables. The aim of PCA is to find hidden patterns amongst the data and transform the original data in such a way that emphasizes their similarities and differences. Once the patterns are found, the data can be represented as components ordered by their relevance and it is possible then to discard components of low level of relevance without loss of important information.

Suggested Citation

  • Antonio Mucherino & Petraq J. Papajorgji & Panos M. Pardalos, 2009. "Statistical Based Approaches," Springer Optimization and Its Applications, in: Data Mining in Agriculture, chapter 0, pages 23-45, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-88615-2_2
    DOI: 10.1007/978-0-387-88615-2_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-88615-2_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.