IDEAS home Printed from https://ideas.repec.org/a/zib/zbjwbm/v4y2022i1p21-25.html
   My bibliography  Save this article

Enhancement Of Biogas Production From Anaerobic Co-Digestion Of Wastewater Sludge, Kitchen Waste And Manure

Author

Listed:
  • Nafeesa Aman

    (Department of Structures & Environmental Engineering, University of Agriculture, Faisalabad, Pakistan.)

  • Anam Maqsood

    (Department of Structures & Environmental Engineering, University of Agriculture, Faisalabad, Pakistan.)

  • Malahat Zehra

    (Department of Structures & Environmental Engineering, University of Agriculture, Faisalabad, Pakistan.)

  • Zarqa Hassan

    (Department of Structures & Environmental Engineering, University of Agriculture, Faisalabad, Pakistan.)

  • M. Usman Farid

    (Department of Structures & Environmental Engineering, University of Agriculture, Faisalabad, Pakistan.)

Abstract

Bioenergy is the most outstanding renewable source among other fuels that are non-renewable and running out. Globally, the main cause of the energy crisis is a scarcity of natural resources. In this respect, harnessing the abundant renewable sources for energy production can help to alleviate the crisis of energy. Developing countries needs an incessant supply of cheap and clean energy sources. Bioenergy production from biomass such as manure, agricultural residue, and municipal solid waste. it is economically feasible because organic substrates have high nutritive values for micro-organism (especially kitchen waste), high biodegradability rate, and high calorific values. This study has investigated the anaerobic co-digestion of wastewater sludge, Manure and kitchen waste for bio-energy production and analyzed the parameters which have significant effect on digestion process. This process has also decreased the excess of BOD, COD, N and P about 64.07%, 60.16%, 56.06% and 71.02% respectively which indicated the organic fraction utilized by microbes. Anaerobic co-digestion enhances biogas production when treating such wastes wastewater sludge, Manure and kitchen waste combined.

Suggested Citation

  • Nafeesa Aman & Anam Maqsood & Malahat Zehra & Zarqa Hassan & M. Usman Farid, 2022. "Enhancement Of Biogas Production From Anaerobic Co-Digestion Of Wastewater Sludge, Kitchen Waste And Manure," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 21-25, February.
  • Handle: RePEc:zib:zbjwbm:v:4:y:2022:i:1:p:21-25
    DOI: 10.26480/jwbm.01.2022.21.25
    as

    Download full text from publisher

    File URL: https://jwbm.com.my/archives/1jwbm2022/1jwbm2022-21-25.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jwbm.01.2022.21.25?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abbasi, Kashif & Jiao, Zhilun & Khan, Arman & Shahbaz, Muhammad, 2020. "Asymmetric impact of renewable and non-renewable energy on economic growth in Pakistan: New evidence from a nonlinear analysis," MPRA Paper 101854, University Library of Munich, Germany, revised 13 Jul 2020.
    2. Muhammad U. Khan & Muhammad Ahmad & Muhammad Sultan & Ihsanullah Sohoo & Prakash C. Ghimire & Azlan Zahid & Abid Sarwar & Muhammad Farooq & Uzair Sajjad & Peyman Abdeshahian & Maryam Yousaf, 2021. "Biogas Production Potential from Livestock Manure in Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    3. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    4. Isci, A. & Demirer, G.N., 2007. "Biogas production potential from cotton wastes," Renewable Energy, Elsevier, vol. 32(5), pages 750-757.
    5. Kumar, Smita S. & Kumar, Vivek & Kumar, Ritesh & Malyan, Sandeep K. & Bishnoi, Narsi R., 2019. "Ferrous sulfate as an in-situ anodic coagulant for enhanced bioelectricity generation and COD removal from landfill leachate," Energy, Elsevier, vol. 176(C), pages 570-581.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    2. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    3. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    4. Abbasi, Kashif Raza & Adedoyin, Festus Fatai & Abbas, Jaffar & Hussain, Khadim, 2021. "The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation," Renewable Energy, Elsevier, vol. 180(C), pages 1439-1450.
    5. Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
    6. Zhang, Jinjun & Abbasi, Kashif Raza & Hussain, Khadim & Akram, Sabahat & Alvarado, Rafael & Almulhim, Abdulaziz I., 2022. "Another perspective towards energy consumption factors in Pakistan: Fresh policy insights from novel methodological framework," Energy, Elsevier, vol. 249(C).
    7. Henrique Oliveira & VĂ­ctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    8. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    9. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    10. Arunava Bandyopadhyay & Soumen Rej & Kashif Raza Abbasi & Ashar Awan, 2023. "Nexus between tourism, hydropower, and CO2 emissions in India: fresh insights from ARDL and cumulative fourier frequency domain causality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10903-10927, October.
    11. Ramzan, Muhammad & Abbasi, Kashif Raza & Iqbal, Hafiz Arslan & Adebayo, Tomiwa Sunday, 2023. "What's at Stake? The empirical importance of government revenue and debt and renewable energy for environmental neutrality in the US economy," Renewable Energy, Elsevier, vol. 205(C), pages 475-489.
    12. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    13. Aniqa Arslan & Arslan Qayyum & Mosab I. Tabash & Kiran Nair & Muhammad AsadUllah & Linda Nalini Daniel, 2023. "The Impact of Economic Complexity, Usage of Energy, Tourism, and Economic Growth on Carbon Emissions: Empirical Evidence of 102 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 315-324, September.
    14. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    15. Hamawand, Ihsan & Sandell, Gary & Pittaway, Pam & Chakrabarty, Sayan & Yusaf, Talal & Chen, Guangnan & Seneweera, Saman & Al-Lwayzy, Saddam & Bennett, John & Hopf, Joshua, 2016. "Bioenergy from Cotton Industry Wastes: A review and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 435-448.
    16. Amjid, Syed S. & Bilal, Muhammad Q. & Nazir, Muhammad S. & Hussain, Altaf, 2011. "Biogas, renewable energy resource for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2833-2837, August.
    17. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    18. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Mutesasira J. & Mukasa-Tebandeke I. Z. & Wasajja H. Z. & Nankinga R., 2018. "Assessing Performance of Cattle Dung and Waste Cooked Foods in Producing Biogas as Single Substrate and Mixed Substrates in Kampala Uganda," Academic Journal of Chemistry, Academic Research Publishing Group, vol. 3(11), pages 101-108, 11-2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbjwbm:v:4:y:2022:i:1:p:21-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://jwbm.com.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.