IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/195056.html
   My bibliography  Save this article

Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi

Author

Listed:
  • Laze, Kuenda
  • Gordon, Ascelin

Abstract

Countries in south-eastern Europe are cooperating to conserve a sub-endemic lynx species, Lynx lynx martinoi. Yet, the planning of species conservation should go hand-in-hand with the planning and management of (new) protected areas. Lynx lynx martinoi has a small, fragmented distribution with a small total population size and an endangered population. This study combines species distribution modelling with spatial prioritisation techniques to identify conservation areas for Lynx lynx martinoi. The aim was to determine locations of high probability of occurrence for the lynx, to potentially increase current protected areas by 20% in Albania, the former Yugoslav Republic of Macedonia, Montenegro, and Kosovo. The species distribution modelling used generalised linear models with lynx occurrence and pseudo-absence data. Two models were developed and fitted using the lynx data: one based on natural factors, and the second based on factors associated with human disturbance. The Zonation conservation planning software was then used to undertake spatial prioritisations of the landscape using the first model composed of natural factors as a biological feature, and (inverted) a second model composed of anthropological factors such as a cost layer. The first model included environmental factors as elevation, terrain ruggedness index, woodland and shrub land, and food factor as chamois prey (occurrences) and had a prediction accuracy of 82%. Second model included anthropological factors as agricultural land and had a prediction accuracy of 65%. Prioritised areas for extending protected areas for lynx conservation were found primarily in the Albania–Macedonia–Kosovo and Montenegro–Albania–Kosovo cross-border areas. We show how natural and human factors can be incorporated into spatially prioritising conservation areas on a landscape level. Our results show the importance of expanding the existing protected areas in cross-border areas of core lynx habitat. The priority of these cross-border areas highlight the importance international cooperation can play in designing and implementing a coherent and long-term conservation plan including a species conservation plan to securing the future of the lynx.

Suggested Citation

  • Laze, Kuenda & Gordon, Ascelin, 2016. "Incorporating natural and human factors in habitat modelling and spatial prioritisation for the Lynx lynx martinoi," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 17-31.
  • Handle: RePEc:zbw:espost:195056
    DOI: 10.5194/we-16-17-2016
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/195056/1/Laze_2016_factors_habitat_modelling.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5194/we-16-17-2016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:zbw:iamost:184334 is not listed on IDEAS
    2. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    3. Laze, Kuenda, 2014. "Identifying and understanding the patterns and processes of forest cover change in Albania and Kosovo," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 74, number 74, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    3. Doko, Tomoko & Fukui, Hiromichi & Kooiman, Andre & Toxopeus, A.G. & Ichinose, Tomohiro & Chen, Wenbo & Skidmore, A.K., 2011. "Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan," Ecological Modelling, Elsevier, vol. 222(3), pages 748-761.
    4. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    5. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    6. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    7. Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
    8. Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).
    9. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    10. Chefaoui, Rosa M. & Serrão, Ester A., 2017. "Accounting for uncertainty in predictions of a marine species: Integrating population genetics to verify past distributions," Ecological Modelling, Elsevier, vol. 359(C), pages 229-239.
    11. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    12. Watling, James I. & Romañach, Stephanie S. & Bucklin, David N. & Speroterra, Carolina & Brandt, Laura A. & Pearlstine, Leonard G. & Mazzotti, Frank J., 2012. "Do bioclimate variables improve performance of climate envelope models?," Ecological Modelling, Elsevier, vol. 246(C), pages 79-85.
    13. Brice B Hanberry & Hong S He & Brian J Palik, 2012. "Pseudoabsence Generation Strategies for Species Distribution Models," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    14. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    15. Senait D Senay & Susan P Worner & Takayoshi Ikeda, 2013. "Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-16, August.
    16. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    17. Hengl, Tomislav & Sierdsema, Henk & Radović, Andreja & Dilo, Arta, 2009. "Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging," Ecological Modelling, Elsevier, vol. 220(24), pages 3499-3511.
    18. Sebastián Block & Frédérik Saltré & Marta Rodríguez-Rey & Damien A Fordham & Ingmar Unkel & Corey J A Bradshaw, 2016. "Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
    19. Peiwei Fan & Mengmeng Hao & Fangyu Ding & Dong Jiang & Donglin Dong, 2020. "Quantifying Global Potential Marginal Land Resources for Switchgrass," Energies, MDPI, vol. 13(23), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:195056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.