IDEAS home Printed from https://ideas.repec.org/p/ags/iamost/184334.html
   My bibliography  Save this paper

Identifying and understanding the patterns and processes of forest cover change in Albania and Kosovo

Author

Listed:
  • Laze, Kuenda

Abstract

No abstract is available for this item.

Suggested Citation

  • Laze, Kuenda, 2014. "Identifying and understanding the patterns and processes of forest cover change in Albania and Kosovo," Studies on the Agricultural and Food Sector in Transition Economies 184334, Institute of Agricultural Development in Transition Economies (IAMO).
  • Handle: RePEc:ags:iamost:184334
    DOI: 10.22004/ag.econ.184334
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/184334/files/sr_vol74.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.184334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dan-Lin Yu, 2006. "Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(1), pages 173-190, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    2. Andrea Pravitasari & Izuru Saizen & Narumasa Tsutsumida & Ernan Rustiadi & Didit Pribadi, 2015. "Local Spatially Dependent Driving Forces of Urban Expansion in an Emerging Asian Megacity: The Case of Greater Jakarta (Jabodetabek)," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 8(1), pages 108-108, January.
    3. José-María Montero & Román Mínguez & Gema Fernández-Avilés, 2018. "Housing price prediction: parametric versus semi-parametric spatial hedonic models," Journal of Geographical Systems, Springer, vol. 20(1), pages 27-55, January.
    4. Stephen Matthews & Tse-Chuan Yang, 2012. "Mapping the results of local statistics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(6), pages 151-166.
    5. Laze, Kuenda, 2014. "Identifying and understanding the patterns and processes of forest cover change in Albania and Kosovo," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 74, number 74.
    6. Yu, Danlin & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Li, Guangdong, 2021. "The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis," Land Use Policy, Elsevier, vol. 100(C).
    7. Носов В.В. & Цыпин А.П., 2015. "Эконометрическое Моделирование Цены Однокомнатной Квартиры Методом Географически Взвешенной Регрессии," Izvestiya of Saratov University. New Series. Series: Economics. Management. Law Известия Саратовского университета. Новая серия. Серия Экономика. Управление. Право, CyberLeninka;Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского», vol. 15(4), pages 381-387.
    8. Kubiszewski, Ida & Jarvis, Diane & Zakariyya, Nabeeh, 2019. "Spatial variations in contributors to life satisfaction: An Australian case study," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    9. Chuanglin Fang & Haimeng Liu & Guangdong Li & Dongqi Sun & Zhuang Miao, 2015. "Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models," Sustainability, MDPI, vol. 7(11), pages 1-23, November.
    10. Yaojun Zhang & Danlin Yu & Qiao Cen, 2019. "Investigating China's inter-prefecture migration from a place attractivity perspective, its spatial patterns, and demographic characteristics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(34), pages 1007-1020.
    11. Sven Müller, 2012. "Identifying spatial nonstationarity in German regional firm start-up data," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 113-132, September.
    12. Cem Ertur & Julie Le Gallo, 2008. "Regional Growth and Convergence: Heterogenous reaction versus interaction in spatial econometric approaches," Working Papers hal-00463274, HAL.
    13. Xiaoxi Wang & Yaojun Zhang & Danlin Yu & Xiwei Wu & Ding Li, 2022. "Changes in Demographic Factors’ Influence on Regional Productivity Growth: Empirical Evidence from China, 2000–2010," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    14. Guangdong Li & Chuanglin Fang, 2014. "Analyzing the multi-mechanism of regional inequality in China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 155-182, January.
    15. Latinopoulos, Dionysis, 2018. "Using a spatial hedonic analysis to evaluate the effect of sea view on hotel prices," Tourism Management, Elsevier, vol. 65(C), pages 87-99.
    16. Fan, Ruguo & Luo, Ming & Zhang, Pengfei, 2016. "A study on evolution of energy intensity in China with heterogeneity and rebound effect," Energy, Elsevier, vol. 99(C), pages 159-169.
    17. Cai, Ruohong & Yu, Danlin & Oppenheimer, Michael, 2014. "Estimating the Spatially Varying Responses of Corn Yields toWeather Variations using GeographicallyWeighted Panel Regression," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-23.
    18. Xian F. Bak & Geoffrey J. D. Hewings, 2019. "The heterogeneous spatial impact of foreclosures on nearby property values," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 62(3), pages 439-466, June.
    19. Cho, Seong-Hoon & Lambert, Dayton M. & Kim, Seung Gyu & Jung, Suhyun, 2009. "Extreme coefficients in Geographically Weighted Regression and their effects on mapping," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49117, Agricultural and Applied Economics Association.
    20. Kamar Ali & Mark D. Partridge & M. Rose Olfert, 2007. "Can Geographically Weighted Regressions Improve Regional Analysis and Policy Making?," International Regional Science Review, , vol. 30(3), pages 300-329, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iamost:184334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iamoode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.