IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6197-d451021.html
   My bibliography  Save this article

Quantifying Global Potential Marginal Land Resources for Switchgrass

Author

Listed:
  • Peiwei Fan

    (Department of Geological Engineering and Environment, China University of Mining and Technology, Beijing 100083, China
    These authors contributed equally to this work.)

  • Mengmeng Hao

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Fangyu Ding

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Dong Jiang

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Donglin Dong

    (Department of Geological Engineering and Environment, China University of Mining and Technology, Beijing 100083, China)

Abstract

Switchgrass ( Panicum virgatum L.) with its advantages of low maintenance and massive distribution in temperate zones, has long been regarded as a suitable biofuel feedstock with a promising prospect. Currently, there is no validated assessment of marginal land for switchgrass growth on a global scale. Although, on both regional and national scale there have been several studies evaluating the potential marginal lands for growing switchgrass. To obtain the first global map that presents the distribution of switchgrass growing in potential marginal land, we employed a boosted regression tree (BRT) modeling procedure integrated with released switchgrass records along with a series of high-spatial-resolution environmental variables. The result shows that the available marginal land resources satisfying switchgrass growing demands are mainly distributed in the southern and western parts of North America, coastal areas in the southern and eastern parts of South America, central and southern Africa, and northern Oceania, approximately 2229.80 million hectares. Validation reveals that the ensembled BRT models have a considerably high performance (area under the curve: 0.960). According to our analysis, annual cumulative precipitation accounts for 45.84% of the full impact on selecting marginal land resources for switchgrass, followed by land cover (14.97%), maximum annual temperature (12.51%), and mean solar radiation (10.25%). Our findings bring a new perspective on the development of biofuel feedstock.

Suggested Citation

  • Peiwei Fan & Mengmeng Hao & Fangyu Ding & Dong Jiang & Donglin Dong, 2020. "Quantifying Global Potential Marginal Land Resources for Switchgrass," Energies, MDPI, vol. 13(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6197-:d:451021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    2. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    3. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    4. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    5. Zhuang, Dafang & Jiang, Dong & Liu, Lei & Huang, Yaohuan, 2011. "Assessment of bioenergy potential on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1050-1056, February.
    6. Lu Lu & Dong Jiang & Dafang Zhuang & Yaohuan Huang, 2012. "Evaluating the Marginal Land Resources Suitable for Developing Pistacia chinensis -Based Biodiesel in China," Energies, MDPI, vol. 5(7), pages 1-13, June.
    7. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    8. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.
    9. Dong Jiang & Tian Ma & Fangyu Ding & Jingying Fu & Mengmeng Hao & Qian Wang & Shuai Chen, 2019. "Mapping Global Environmental Suitability for Sorghum bicolor (L.) Moench," Energies, MDPI, vol. 12(10), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Yan, Dan & Liu, Litao & Li, Jinkai & Wu, Jiaqian & Qin, Wei & Werners, Saskia E., 2021. "Are the planning targets of liquid biofuel development achievable in China under climate change?," Agricultural Systems, Elsevier, vol. 186(C).
    3. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    4. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    5. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    6. Dong Jiang & Tian Ma & Fangyu Ding & Jingying Fu & Mengmeng Hao & Qian Wang & Shuai Chen, 2019. "Mapping Global Environmental Suitability for Sorghum bicolor (L.) Moench," Energies, MDPI, vol. 12(10), pages 1-11, May.
    7. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    8. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    9. Ehsan Tavakoli-Hashjini & Annette Piorr & Klaus Müller & José Luis Vicente-Vicente, 2020. "Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Reg," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    10. Lu, Lu & Jiang, Dong & Fu, Jingying & Zhuang, Dafang & Huang, Yaohuan & Hao, Mengmeng, 2014. "Evaluating energy benefit of Pistacia chinensis based biodiesel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 258-264.
    11. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    13. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    14. Fangyu Ding & Tian Ma & Mengmeng Hao & Qian Wang & Shuai Chen & Di Wang & Luqi Huang & Xiaobo Zhang & Dong Jiang, 2020. "Mapping Worldwide Environmental Suitability for Artemisia annua L," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    15. Yuchen Guo & Wei Song, 2019. "Spatial Distribution and Simulation of Cropland Abandonment in Wushan County, Chongqing, China," Sustainability, MDPI, vol. 11(5), pages 1-25, March.
    16. Zhihui Li & Xiangzheng Deng & Xi Chu & Gui Jin & Wei Qi, 2019. "An Outlook on the Biomass Energy Development Out to 2100 in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1359-1377, December.
    17. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    18. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    20. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6197-:d:451021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.