IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v14y2015i06ns0219622015500224.html
   My bibliography  Save this article

Optimal Design for a Bivariate Simple Step-Stress Accelerated Life Testing Model with Type-II Censoring and Gompertz Distribution

Author

Listed:
  • Nooshin Hakamipour

    (Faculty of Mathematics and Computer Science, Department of Statistics, Amirkabir University of Technology, Tehran, Iran)

  • Sadegh Rezaei

    (Faculty of Mathematics and Computer Science, Department of Statistics, Amirkabir University of Technology, Tehran, Iran)

Abstract

This paper deals with the optimal designing of step-stress accelerated life test (SSALT) for two stress variables. The lifetime of the items follows the Gompertz distribution and the test is subject to termination at a predetermined number of failures of test items (Type II censoring). Furthermore, we model the effects of changing stress as a cumulative exposure (CE) function. This test is presented to obtain the optimal hold times for each combination of stress levels. The optimal test plan with the minimum asymptotic variance (AV) of the maximum likelihood estimator (MLE) of reliability at time ξ is determined. Due to nonlinearity and complexity of the objective function, the particle swarm optimization (PSO) algorithm is developed to calculate the optimal hold times. In this method, the research speed is very fast and optimization ability is more. Finally, simulation results are discussed to illustrate the proposed criteria. For some selected values of the parameters, the effect of initial estimates on optimal values has been studied.

Suggested Citation

  • Nooshin Hakamipour & Sadegh Rezaei, 2015. "Optimal Design for a Bivariate Simple Step-Stress Accelerated Life Testing Model with Type-II Censoring and Gompertz Distribution," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1243-1262, November.
  • Handle: RePEc:wsi:ijitdm:v:14:y:2015:i:06:n:s0219622015500224
    DOI: 10.1142/S0219622015500224
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622015500224
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622015500224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafik A. Aliev & Oleg H. Huseynov, 2014. "Fuzzy Geometry-Based Decision Making with Unprecisiated Visual Information," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 1051-1073.
    2. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    3. Maxim S. Finkelstein, 2006. "On engineering reliability concepts and biological aging," MPIDR Working Papers WP-2006-021, Max Planck Institute for Demographic Research, Rostock, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    2. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    3. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    4. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    5. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    6. Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
    7. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    8. Karimi, Behzad & Niaki, S.T.A. & Haleh, Hassan & Naderi, Bahman, 2018. "Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 92-104.
    9. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    11. Ali Salmasnia & Sadegh Noori & Hadi Mokhtari, 2019. "A redundancy allocation problem by using utility function method and ant colony optimization: tradeoff between availability and total cost," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 416-428, June.
    12. Wei Sun & Yi Su, 2020. "Analysing Green Forward–Reverse Logistics with NSGA-II," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    13. Canales-Bustos, Linda & Santibañez-González, Ernesto & Candia-Véjar, Alfredo, 2017. "A multi-objective optimization model for the design of an effective decarbonized supply chain in mining," International Journal of Production Economics, Elsevier, vol. 193(C), pages 449-464.
    14. Petru Cașcaval & Florin Leon, 2022. "Optimization Methods for Redundancy Allocation in Hybrid Structure Large Binary Systems," Mathematics, MDPI, vol. 10(19), pages 1-33, October.
    15. Ramezani, Reza & Ghavidel, Abolfazl & Sedaghat, Yasser, 2021. "Exact and efficient reliability and performance optimization of synchronous task graphs," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Fang, Jianguang & Gao, Yunkai & Sun, Guangyong & Xu, Chengmin & Li, Qing, 2015. "Multiobjective robust design optimization of fatigue life for a truck cab," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 1-8.
    17. Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
    18. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    19. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    20. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:14:y:2015:i:06:n:s0219622015500224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.