IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp1026-1042.html
   My bibliography  Save this article

Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio

Author

Listed:
  • Sharafi, Masoud
  • ElMekkawy, Tarek Y.
  • Bibeau, Eric L.

Abstract

We develop a simulation-based meta-heuristic approach that determines the optimal size of a hybrid renewable energy system for residential buildings. This multi-objective optimization problem requires the advancement of a dynamic multi-objective particle swarm optimization algorithm that maximizes the renewable energy ratio of buildings and minimizes total net present cost and CO2 emission for required system changes. Three proven performance metrics evaluate the quality of the Pareto front generated by the proposed approach. The obtained results are compared against two reported multi-objective optimization algorithms in the related literature. Finally, an existing residential apartment located in a cold Canadian climate provides a test case to apply the proposed model and optimally size a hybrid renewable energy system. In this test application, the model investigates the potential use of a heat pump, a biomass boiler, wind turbines, solar heat collectors, photovoltaic panels, and a heat storage tank to produce renewable energy for the building. Furthermore, the utilization of plug-in electric vehicles for transportation reduces gasoline use where all power is generated by the building, and the utility provides the means to match intermittent renewable generation from solar and wind to the building electrical loads. Model results show that under the chosen meteorological conditions and building parameters a wind turbine, and plug-in electric vehicle technologies are consistently the optimal option to achieve a target renewable energy ratio. In particular, the optimization result shows that the renewable energy ratio can achieve near 100% by installing a 73 kW wind turbine, a 200 kW biomass boiler, and using plug-in electric vehicles. This option has a net present cost of C$705,180 and results in total CO2 emission of 2.4 ton/year. Finally, a sensitivity analysis is performed to investigate the impact of economic constants on net present cost of the obtained non-dominated solutions.

Suggested Citation

  • Sharafi, Masoud & ElMekkawy, Tarek Y. & Bibeau, Eric L., 2015. "Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1026-1042.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1026-1042
    DOI: 10.1016/j.renene.2015.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115004012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosiek, Sabina & Batlles, Francisco Javier, 2013. "Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 147-168.
    2. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.
    3. Thompson, Shirley & Duggirala, Bhanu, 2009. "The feasibility of renewable energies at an off-grid community in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2740-2745, December.
    4. Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.
    5. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    6. Irimescu, Adrian, 2011. "Fuel conversion efficiency of a port injection engine fueled with gasoline–isobutanol blends," Energy, Elsevier, vol. 36(5), pages 3030-3035.
    7. Lee, Kyoung-Ho & Lee, Dong-Won & Baek, Nam-Choon & Kwon, Hyeok-Min & Lee, Chang-Jun, 2012. "Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen," Energy, Elsevier, vol. 47(1), pages 83-96.
    8. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    9. Chua, K.J. & Yang, W.M. & Wong, T.Z. & Ho, C.A., 2012. "Integrating renewable energy technologies to support building trigeneration – A multi-criteria analysis," Renewable Energy, Elsevier, vol. 41(C), pages 358-367.
    10. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    11. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharafi, Masoud & ElMekkawy, Tarek Y., 2015. "Stochastic optimization of hybrid renewable energy systems using sampling average method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1668-1679.
    2. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    3. Li, Rui & Dai, Yanjun & Cui, Guomin, 2019. "Multi-objective optimization of solar powered adsorption chiller combined with river water heat pump system for air conditioning and space heating application," Energy, Elsevier, vol. 189(C).
    4. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
    5. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    6. Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
    7. Zandi, M. & Bahrami, M. & Eslami, S. & Gavagsaz-Ghoachani, R. & Payman, A. & Phattanasak, M. & Nahid-Mobarakeh, B. & Pierfederici, S., 2017. "Evaluation and comparison of economic policies to increase distributed generation capacity in the Iranian household consumption sector using photovoltaic systems and RETScreen software," Renewable Energy, Elsevier, vol. 107(C), pages 215-222.
    8. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    9. Bornatico, Raffaele & Hüssy, Jonathan & Witzig, Andreas & Guzzella, Lino, 2013. "Surrogate modeling for the fast optimization of energy systems," Energy, Elsevier, vol. 57(C), pages 653-662.
    10. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    11. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    12. Ashouri, Araz & Petrini, Flavio & Bornatico, Raffaele & Benz, Michael J., 2014. "Sensitivity analysis for robust design of building energy systems," Energy, Elsevier, vol. 76(C), pages 264-275.
    13. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    14. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    15. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    16. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    17. Fitsum Salehu Kebede & Jean-Christophe Olivier & Salvy Bourguet & Mohamed Machmoum, 2021. "Reliability Evaluation of Renewable Power Systems through Distribution Network Power Outage Modelling," Energies, MDPI, vol. 14(11), pages 1-25, May.
    18. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    19. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    20. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1026-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.